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Introduction to Data Analysis

In broad terms, we can divide the LHC data analyses in two camps:

[J Measurements, in which one is trying to measure some known standard model quantity.
Examples go from very simple quantities, like the Higgs boson mass My, to convoluted quantities
like the fully inclusive top quark pair production at the LHC at 14 TeV, o(pp — tt + anything).

[ Searches, in which one tries to uncover evidence of discrepancies between the standard model
predictions and the observed data. Examples include new searches for resonances, supersymmetry,

dark matter. ..
But this distinction is a bit artificiall Consider:

O H — pp at the 13 TeV LHC has a well-defined SM prediction: o(pp — H — puu) ~ 12.08 fb.
This has not been observed yet, so we call it a search.

[J When searching for a new resonance, pp —+ Z' — ee, we usually make (multiple) assumptions on
the value of its mass, spin, etc. We then try to measure its production cross-section — usually
coming up with a value statistically compatible with zero.
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What do we Actually Measure?

Easy answer — we count the number of events in a given configuration. The observed
number of events for a given physics process Ny is:

Nops =0 X L X A Xe

where:

O o is the production cross-section. This is a purely theoretical-driven quantity — it is the
very o we learned how to calculate on the first lecture.

O L is the accelerator luminosity. This is a measure of how many particles we are able to fit
through a given space in a given time. We discussed it on the second lecture.

0 A is the acceptance. It measures, for that given process, the ratio of detectable particles
that actually go into the detector volume.
® Technically, this is also theoretically-driven, but it is customary to factor it out like this.

O € is the selection efficiency. It can be subdivided into two parts, € = €, X €,:
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® ¢, is the efficiency of reconstructing a given set of objects in the detector. We discussed it on the
third lecture.

® ¢, is the efficiency of any further requirements done in the analysis (a.k.a. fun ©).

The “given configuration” we discussed above is determined by the acceptance x efficiency
product. The total number of events we observe in that configuration is:

Nobs = Z Nébs + Nfakes
)

where the sum runs over all of the physics process that produce events in that configuration.
There may be spurious contributions Ngaes from any kinds of non-collision effects. Those
include:
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[0 Cosmic rays going through the detector (fake muons).
[0 Longitudinal particles from beam interactions with accelerator elements (beam halo).
O Hardware failures: “hot cells”, dead channels, high voltage spikes.

[ Software failures: e.g., unusual configurations of hits leading to high numbers of fake
tracks.

[0 The phase of the moon (?)
e Nucl. Instrum. Methods Phys. Res., A 357 (1995) 249-252
[l The seasonal variation of rainfall (777)
® Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

e Nucl. Instrum. Methods Phys. Res., A 417 (1998) 9-15

But let's go back to collision processes. ..
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Signal and Background

The fact that the sum )", Nébs goes over all physics processes means that we cannot readily
separate the process in which we are interested — the signal. All of the other processes
constitute the background for that measurement. We can separate backgrounds in two sets:

O lrreducible backgrounds are those that share the exact same final state as the signal. For
instance, the nonresonant diphoton production pp — <7 is an irreducible background to
Higgs boson production in that channel, pp — H — 7. The only option is to model
them as well as possible.

O Reducible backgrounds are those where the final state differs from that of the signal, but
due to various reasons end up being selected by our analysis. An example would be
inclusive Z — ¢¢ production being a background for a ZZ — ¢fqq search: the former
could appear as a “dilepton + jet” final state, and that jet could be mistaken to be the
Z — qq leg of the latter.

2021-08-05 Thiago Tomei — Aspects of HEP — Data Analysis 6




y-=

=Y\

q v 2
)i - SN
H
q 2 g v g v

7
g

fte]
~

q 14 q q

Aspects of HEP — Data Analy:

2021-08-05




Separating Signal and Background

Our first task is to search for observables that are
differently distributed for signal and background.
Some searches are easy, for Z — /-

[0 2 high-pt leptons.
[0 Same flavour, opposite charges.
[0 Invariant mass My, in 70-110 GeV range.

Other searches are harder. The Razor variables
used for SUSY searches:

. . : N2 MEN?
Mg = \/(|ﬁ]1| +152))? - (pzjl +pz“> and R? = (ﬁ)

miss J1 J2\ _ mmiss | [ ~J1 = Jj2
. R Pr (pT + i ) Pr (pT + Dy )
with Mt =

2
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Machine Learning in Analysis

Some times, we don't need to search for
e variables. .. the computer can do it for us!
1 Machine Learning (ML) techniques can be
] applied to two kinds of problems:

CMS simulation (3Tev)
T

5000~

—— B

4000

Events / 2.5 GeV/

3000

2000 . O Classification problems: the output
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e Usually we unpack the classification and
work with the output variable directly.
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Cut-Based Analyses

[ Design a set of cuts by as unbiased a

procedure as possible. 5
® Blind study: try to avoid observer bias % 5 9E CMS Simulation  Merged untagged
and confirmation bias. Don’t look at the 0.8 212q — Merged VBF-tagged
data until you have frozen the analysis. 07 9gF —— Merged b-tagged
[0 Choose cuts that optimise the final overall 06 Resolved untagged
Resolved VBF-tagged
accuracy of the result. 05

— Resolved b-tagged
e Difficult tradeoff between statistical and

systematic uncertainties (see later).

O Always study the marginal effect of each
of your cuts by tables and plots.

ol b b b b b b b i

(UL LR AN AR AR EAARRRRARR RN AR

® Cuts with no marginal effect (that is, 0"“500 1000 1500 2000 2500 3000 3500 4000
they remove no events after all other m%" [GeV]

cuts) are quite useless.
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Background Estimation

After you optimise your analysis, some background always® remains. An array of options are
available to estimate it:

O Fully trust the simulation: not recommended, except maybe for backgrounds so small that
even an error by a large factor would make no difference.

O Trust a “data corrected” simulation: usually done by defining control regions (a.k.a
“sidebands” ), in which you expect similar behaviour of your background but a
near-absence of your signal.

O Model your background “in situ”: the same, but your control regions act simultaneously
as measurement regions for some other modality of your search.

* Even if it doesn't, you still have to find a way to put an uncertainty on that zero!
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Basic Concepts in Probability

0O Mathematical probability: given the set of all possible exclusive, elementary events X;,
probability of occurrence of X; is P(X;) and follows the Kolmogorov axioms:
e P(X;)>0 foralli
* P(X;)or X;)=P(X;)+ P(X;)
> P(X;)=1
Q

[ Frequentist probability: if your observe N events, and n of them are of type N, the
probability that any single event will be of type X is the “empirical” limit of the
frequency ratio:

® Approximate the probability by making NV large.
® Experiments have to be repeatable — but repeatable means that all the relevant conditions
are the same. Good science should produce reproducible results.
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[J Bayesian probability: it is the degree of belief in X. Operational definition is based on
the coherent bet: [Finettil974]
® “The idea is to determine how strongly a person believes that X will occur by determining
how much he would be willing to bet on it, assuming that he would be willing to bet on it,
assuming that he wins a fixed amount if X does later occur and nothing if it fails to occur.
Then P(X) is defined as the largest amount he would be willing to bet, divided by the
amount he stands to win." [James2006].

® This follows the Kolmogorov axioms.
® However, it is a property of both the observer and the observed system — it will in general

change if the observer obtains more knowledge. It is a subjective probability!
® On the other hand, it helps addressing some questions that we want to try to answer:
o “What is the probability that the universe is (cosmologically) flat?”
O “What is the probability that the Higgs vacuum is stable?”
e There is a lot of work in studying objective Bayesian statistics (H Jeffreys, E. T. Jaynes,
S. James, J. Berger,.... The science is far from settled!
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Bayes Theorem

For discrete events:

P(B’A) . P(A) Bayesian 0 P(Xowl) . P(@Z)
P(AB) = ——~ 7~ P6;| X") =
For continuous random variables:
h ian X90)p(6
) = P B o p(X010)2(0)

9(X) [ p(X°10) p(8)do
0 p(9|X°) is a p.d.f, the posterior probability density for 6.

0 p(X°|0) is the likelihood function L(#). It is not a p.d.f

[ p(0) is the prior probability density for 6. Here lies the major problem!
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Example (straight from Wikipedia):

O There are two subspecies of beetle — the “common one” C' and the “rare one” R.

0 An entomologist spots what might be a rare subspecies of beetle, due to the pattern X
on its back.

O In the rare subspecies, 98% have the pattern, or P(X|R) = 98%. In the common
subspecies, 5% have the pattern, or P(X|C).

[ The rare subspecies accounts for only 0.1% of the population.

O How likely is the beetle having the pattern to be rare, or what is P(R|X)?

2021-08-05
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Example (straight from Wikipedia):

O There are two subspecies of beetle — the “common one” C' and the “rare one” R.

0 An entomologist spots what might be a rare subspecies of beetle, due to the pattern X
on its back.

O In the rare subspecies, 98% have the pattern, or P(X|R) = 98%. In the common
subspecies, 5% have the pattern, or P(X|C).

[J The rare subspecies accounts for only 0.1% of the population.
O How likely is the beetle having the pattern to be rare, or what is P(R|X)?

P(X|R)P(R) 0.98 x 0.001

P(R|X) = _
(R|X) P(X) 0.98 x 0.001 + 0.05 x 0.999

~ 1.9% (1)

2021-08-05
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The Prior ProblemS — stolen from M. Pierini (CERN)

O The need of priors in Bayesian statistics is a problem for some physicist

The origin of the problem lies in the very first Bayesian assumption, namely that unknown model
parameters are to be understood as mathematical objects distributed according to PDFs, which are
assumed to be known: the priors. Obviously, the choice of the priors cannot be irrelevant; hence,
the Bayesian treatment is doomed to lead to results which depend on the decisions made, necessarily
on unscientific basis, by the authors of a given analysis, for the choice of these extraordinary PDFs.

J. Charles et al. hep-ph/0607246
O The lack of priors in nonBayesian statistics is a problem for some statistician

The frequentist approach to hypothesis testing does not permit researchers to place probabilities
of being correct on the competing hypotheses. This is because of the limitations on mathemat-
ical probabilities used by frequentists. For the frequentists, probabilities can only be defined for
random variables, and hypotheses are not variables (they are not observables)... This limitation
for frequentists is a real drawback because the applied researcher would really like to be able to
place a degree of belief on the hypothesis. He or she would like to see how the weight of evidence
modifies his/her degree of belief (probability) on the hypothesis being true.

J. Press, Subjective and Objective Bayesian Statistics
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Practical Answers to Statistical Questions

[ Point estimation — find a single value § that is “as close as possible” to the true
parameter 6 we want to measure. We usually use the maximum likelihood estimator

OlnL
00; =0

which is optimal in the asymptotic limit of large V.
® But in general it is better to report the likelihood function itself, at least near its maxima.
O Interval estimation — find the range 6, < 6 < 6 that contains the true value 6y with
probability 3.
® 1D: trivial, use the Neyman construction with the Feldman-Cousins “unified approach”;
e ND: use profile likelihood (MINOS). As a bonus, it allows for the removal of nuisance
parameters p by maximising the full likelihood, at each value of the parameter of interest 6.
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Example of Profile Likelihood

ATLAS+CMS w.z,
5 ¥
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o(pp>X>W2Z) (fb)

The profiled combined likelihoods for ATLAS and CMS Run 1 diboson resonance searches. The

best-fit cross-section for the W — WZ; with a W’ mass of 1.9 TeV was o = 5.33:3 fb.
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Hypothesis Testing — from Bob Cousins

Consider two hypotheses:

O Hy: is the null hypothesis. For instance, “the Standard Model is a true description of
nature at the scales probed by the LHC".

[l H;: is the alternative hypothesis. For instance, “(INSERT YOUR MODEL HERE) is a
true description of nature at the scales probed by the LHC".

L(X,0) is different for Hy and H;. How do we test the two hypotheses against each other?

e For the null hypothesis HO, order possible observations x from least extreme to most
extreme, using an ordering principle (which can depend on H1 as well). Choose a cutoff «
(smallish number).

O “Reject” Hy if the observed xg is in the most extreme fraction « of observations x
(generated under Hy). By construction:

e o = probability (with = generated according to Hy) of rejecting Hy when it is true;
e (3 = probability (with = generated according to H;) of not rejecting Hy when it is false.
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CMS Vs =7(8) TeV, L=5.1 (12.2) fb”'
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Expected distribution of —21In(L(07)/L(0")) under the pure pseudoscalar and pure scalar
hypotheses (histograms) for the Higgs boson. The arrow indicates the value determined from
the CMS observed data with the discovery dataset (7 TeV, 5.1 fb! and 8 TeV, 12.2 fb'!).
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A decision on whether or not to declare discovery (falsifying Hy) requires 2 more inputs, both
of which can affect the choice of a:

O Prior belief in Hy vs H;.

[0 Cost of Type | error (false discovery claim) vs cost of Type Il error (missed discovery).

A one-size-fits-all criterion of a corresponding to 50 is without foundation!

...and still, I (Thiago) am positive it will still be used for the rest of the days of the LHC.
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Example: Ratio of Hadronic & Leptonic Cross Sections in e"e~ Reactions

O For energy range where five quark flavours
contribute and below the Z resonance (for
lowest order in perturbation theory)

R — o(ete” — hadrons)  opaq
T oleter s ptuT)  owp

11
:NCZeZZch e*
q

[0 Goal: determine or constrain the number
of colour states (INV;)
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O Count the number of events with hadronic (/NVhaq) and leptonic (Vi) final states

Ohad _ Nhad/L  Nhad

R, =

Olep B Nlep/£ B Nlep

O Define event selection and estimate backgrounds, possibly with input from simulation to

define discrimination variables.
® In this case, the number of charged particles
(Ntracks) in each event helps to separate hadronic
from leptonic events. Usually leptonic events have
few tracks, whilst hadronic events have many more.
® But there is some overlap, so the selection has an
efficiency (e < 1) to select a given type of event.

Nmeas __ _meas . true
had/lep — €had/lep had/lep

° gg‘}fep should be corrected. In practice, what we
do is estimate the efficiencies (using either simulation

or data).
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O Analysis
® |n general efficiency is not only due to the cut, but also includes: € = A - €, * €rec * €cut
o A: detector acceptance
O €tyi, €Erec, Ecut: trigger, reconstruction, and cut efficiencies

® Background subtraction

Nfe’})"e = ( l?peas - Nbckg)/ﬂep

e Statistical uncertainties
o0 Can be estimated considering the statistical distributions followed in each measurement.
o For counting experiment a Poisson distribution can be a proper choice.
o For efficiency measurement (pass or fail), an uncertainty following a binomial would be
preferable.
® Systematic uncertainties
o In general, it will depend on each analysis (no standard procedure).

o E.g. in the present case we could assign an uncertainty associated to the mismodelling
of detector response by the simulation, which was used for efficiency correction.
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Ratio of Hadronic & Leptonic Cross Sections in e"e~ Reactions: Result

O Measurements of R from different lepton colliders
® The relation for R, in previous slides applies to region Vs > 10 GeV (where quarks u,d,s,c,

and b contribute) and far from the Z boson peak.
11 11

® In this case we have R, = NC? i N, =~ 3.
— — —
: x ~r.
10 || p(28) it
E zZ b
'IOZ? |
- w ¢ E
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Tools of the Trade

d ROOT is a modular scientific software toolkit. It provides all the
functionalities needed to deal with big data processing, statistical analysis, visualisation and
storage. It is currently used by all the LHC experiments.

SciPy is a Python-based ecosystem of open-source software for

mathematics, science, and engineering. In particular, some of the core packages are NumPy,
SciPy library, Matplotlib, IPython, SymPy, pandas.
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