Hadoop in 15 minutes Short presentation: Ask Q's.

Brian Bockelman
OSG All Hands Meeting 2009

Hadoop

- Hadoop is a data processing system that is an open source implementation of the MapReduce paradigm
- Largest user is Yahoo!; largest cluster is 14PB of disk and 32,000 cores.
- We don't use the data processing parts (yet), but the distributed file system that forms part of the core (HDFS)

HDFS

- 2 major kinds of HDFS nodes:
 - Namenode
 - Datanode
- 2 grid nodes:
 - SRM
 - GridFTP
- 2 auxiliary services:
 - Checkpoint server
 - Balancer

HDFS Diagram

HDFS Grid Site

HDFS Details

- Datanode is what you'd expect from a datanode; not much conceptually new.
- Namenode is interesting design.
 - Only namespace and file -> block mapping is persisted.
 - Everything else stays in memory.
 - All operations that do not change namespace only hit RAM; NEVER will hit disk
 - Needs about 1 GB RAM per 1 million files.

HDFS Details

• The Yahoo! folks benchmark the namenode at fantastic rates (50k ops / sec reads, 5k writes)

Why HDFS?

- Why chose HDFS? Roughly,
 - Manageability
 - Reliability
 - Usability
 - Performance

Manageability

- The following tasks are trivial:
 - Integration of statistics with Ganglia.
 - Decommissioning hardware.
 - Recovery from hardware failure.
 - Fsck!
 - Checks the current knowledge of the filesystem and counts how many block replicas there are per file, and highlights any which are under-replicated.
 - Pacman-based install for the whole kit.

FSCK example

000	root@hadoop-name:~ — ssh — 107×33
	6
	Status: HEALTHY
Total size: 72767054047268	B •
Total dirs: 2271	
	urrently being written: 1)
	1053128 (avg. block size 69096115 B)
Minimally replicated blocks:	
	3778 (0.3587408 %)
Under-replicated blocks:	0 (0.0 %)
Mis-replicated blocks: Default replication factor:	0 (0.0 %)
Average block replication:	2.0923886
Corrupt blocks:	0
Missing replicas:	0 (0.0 %)
Number of data-nodes:	113
Number of racks:	1
Number of Facks.	1
The filesystem under path '/' is HEALTHY	
real 0m7.753s	
user 0m0.835s	
sys 0m0.159s	
[root@hadoop-name ~]#	

Reliability

- REPLICATION WORKS
 - You can set default replication factors and per-file replication; we have cms production files @ 4 reps
- Client I/O can live through
 - Namenode failures / restarts
 - Datanode failures / restarts
- Semantics guarantee X complete copies when you finish writing each block.

Reliability

 Datanode deaths are detected when a heartbeat stops for X minutes; re-replication of missing data is wicked fast.

Usability

- Simple client tools for basic I/O operations (get, put, Is, mkdir, rm, mv, etc)
- Or just mount the filesystem read / write using FUSE and any POSIX client works*.
 - * seeks during write not supported
 - This is how CMS jobs run at our site. ROOT I/O is done directly against HDFS through POSIX.
- Users don't have to know *anything* about your filesystem.

(CMSSW) Performance

Performance

- We've clocked:
 - The filesystem at 80Gbps.
 - The SRM endpoints at 30Hz.
 - Fsck tool <10s.</p>
 - Decommissioning in under an hour.
 - Namenode restart in about 60s.
 - WAN transfers peak at 9Gbps, sustain 5Gbps.

Future

- In production now! Our primary SE.
- Packaging and deployment.
- Perhaps putting together a hands-on session at UCSD this spring (?)
- A few "final touches" for code
 - Remove FUSE dependency for BeStMan server use Java API directly.
 - There are other good research projects, but using it as a general-purpose SE is already production.