
SPheRIO manual
(Dated: September 19, 2010)



2

SUMMARY

This document is the programing manual for the FORTRAN77 version of SPheRIO,
which implements the entropy representation of the Smoothed Particle Hydrodynamics
(SPH) method for relativistic high-energy collisions. The acronym SPheRIO stands for
Smoothed Particle hydrodynamical evolution of Relativistic heavy-IOn collisions, therefore
being also a reminder that the code has been developed within the São Paulo - Rio de
Janeiro Collaboration.

Section I gives a bird-eye’s view of the program structure of SPheRIO. A complete
explanation of the option file OPTNS can be found in section II. Section III is devoted to
explain the conventions and interfaces used in the Equation of State (EOS) tables. Section
IV focuses on the details of functions and algorithms of each subroutine. In Section V,
some simple but practical examples are given to show how one may connect his own Initial
Conditions (IC) or EOS with SPheRIO by complying with the code’s interface standard.



3

Contents

Summary 2

I. Main Program Structure 4
Master routine 6
Initialization 7
Hydrodynamic evolution 9
Freeze-out 9
Hadron emission 9
Freeze-out infomation output 10
HBT radius 10
Link-list method 11
Particle splitting 11
Kernel functions 11
Equation of state 11
Pure numerical recipes 12

II. The Option File Interface 13

III. Conventions of EOS Datafile 18

IV. Function and Algorithm of Subroutines 21
Initialization 21
Hydrodynamic evolution 22
Freeze-out 24
Hadron emission 25
HBT radius 26
Link-list method 26
Particle splitting 27
Kernel functions 27
Equation of state 27
Pure numerical recipes 27
Programming style and convention 28

Glossary 29

Index 30



4

I. MAIN PROGRAM STRUCTURE

SPheRIO is an implementation of hydrodynamic model of nucleus-nucleus collisons based
on the SPH method. The main reference to SPheRIO is

Y. Hama, T. Kodama and O. Socolowski Jr., Braz. J. Phys. 35 (2005) 24,

and to the Smoothed Particle Hydrodynamics (SPH) method adopted in SPheRIO is

C.E. Aguiar, T. Kodama, T. Osada, Y. Hama, J. Phys. G27 (2001) 75.

The present release of SPheRIO (v4.01) was built in such a way that it can be easily used
and manipulated by someone who is unfamiliar with the source code. On the other hand, an
experienced programmer can further develop the code for inserting SPheRIO into another
program without much effort. In its current form, SPheRIO consists of several blocks as
shown in Fig.1.

Each block possesses its specific functionalities, meanwhile it can be considered as almost
independent from the rest of the code. In fact they can be compiled independently and
only communicate with other parts of the code through well defined interfaces. Therefore,
debugging one of the blocks in principle should not affect the remaining parts. Several
blocks were implemented so that they could be replaced by the user’s own codes without
much effort, by simply implementing some interface protocols explained in this document.
Concerning the output format of the code, we decided that it should be determined in such
a way as to be sufficient and convenient to connect to other open source codes which deal
with particle decay and rescattering. Within this spirit, we provide several different output
formats.

This section is mainly devoted to explain the structure of SPheRIO and the basic ideas
of its communication interface.

The code SPheRIO is designed to simulate the hydrodynamic evolution in nucleus-nucleus
collisions. Its Equation of Motion (EOM) is based on the SPH method. For practical
reasons, the master routine of SPheRIO, namely, spherio() 1 is embodied in a small shell
script, namely, aamain(). It is the place where most of the initializations are done and the
parameters are read and interpreted by the subroutine aread()2. From the shell, SPheRIO
is called not once but nevent3 times, where nevent = nfreeze×nfull, nfull is the number
of full events, and nfreeze is the number of Monte Carlo (MC) freeze-out procedures which
emulate the hadron emission. When the code is run in an Event-by-Event (EbyE) basis,
nfull should be defined as the number of total events, i.e., nevent = nfull. Effectively, one
may consider two loops, the outer loop goes from 1 to nfull and, for each outer loop, the
inner loop goes from 1 to nfreeze, so that each full collision event possesses nfreeze MC
processes. To be more specific, each time one begins an outer loop, spherio() is evoked.
It then calculates the full hydrodynamic evolution from scratch, storing all the information
on the freeze-out surface, after which the hadron emission is then carried out. By means of

1 the subroutines and input files used in the SPheRIO code are highlighted in boldface characters in this

manual
2 The subroutine aread() adopts NEXUS/EPOS input technique to a great extent; we are very thankful

for the help from Prof. Klaus Werner.
3 Variable names and keywords are denoted by italic letters whenever they appears in the text



5

FIG. 1: Block diagram of SPheRIO programming structure.

xellwrite() the results are directed to the output file or to other subroutine to be added.
Starting from the second inner loop, SPheRIO only computes hadron emission based on
the results of the hydrodynamic evolution that it had already obtained and stored in the
freeze-out surface. The successive inner loops repeat the process of the second inner loop
until a new outer loop starts, where some (presumably) different IC are put into action. This
means that several distinct hadronic emission processes use the same information stored on
the freeze-out surface at the end of the hydrodynamic evolution, for saving computer time.
The double loop structure ends when it finally enumerates all outer loops.

To discuss the general structure of the code, a good place to start with is the master
routine spherio() itself, since many important subroutines of SPheRIO are invoked there.
These subroutines appear in the code in the same order as the run-time calculations develop.
It contains the following major blocks, as shown in Fig.1:

• Initial conditions (IC)

• Equation of Motion (EOM)



6

• Freeze-out (FO)

• Hadron Emission (HE)

• FO info output

• Radius obtained from identical particle correlations or Hanbury-Brown & Twiss effect
(HBT)

There are some other blocks which have distinct features or independent functionalities,
however they are written in such a way that they are either partially integrated within or
frequently invoked from different parts of the code. Therefore it is preferable to separate
them from the rest of the code and treat each of them individually. Those blocks are:

• Link-list method

• Particle splitting (it is literally called particle decay in the code)

• Kernel functions

• Equation of state (EOS)

• Pure numerical recipes

Last but not least, to debug SPheRIO, one also has to know the following aspects

• Input interface between SPheRIO and end-users

• SPheRIO programming style

Master routine

spherio()

The master routine spherio() obtains parameters handed down from the shell script
through the optns file as well as through spherio.set and spherio.inc. The values of
some parameters are defined for a second time according to the setting of ibugflg. It is a
convention in the code that those values determined via ibugflg settings have a high priority
than those defined by optns file or spherio.set. The reason is that it provides a way to
set up a group of parameters in a single step, as specific scenarios for debugging or for
other practical purposes. Therefore one doesn’t have to go through every single parameter
contained in the option file which might be error prone. As an example, we have

⋄ ibugflg = 08 defines an environment to run the code with EOS of massless pions in the
2D+1 case, namely, the EOM will be solved only on the x-y plane, and using the Bjorken
scaling solution for the η direction. At the end, the code will print out the profile of the
hydrodynamic evolution of the system at pre-defined time instants τ = 1, 3, 5, 10. Since this
setting is frequently used, it is more convenient to simply set ibugflg = 08 to activate above
set of pre-defined parameters instead of set by hand their values one by one in the optns
file, which would require to use “set ieos 04”, “set itrobmode 01”, “set idimension 2”, etc.



7

The master routine spherio() creates and controls the main surveillance file ztr.data,
which prints the de facto value of all the major parameters at run-time and monitors the
execution of program with necessary debugging outputs and warning messages. Depending
on the parameter ieos, spherio() loads correspondingly the EOS tables, and some pre-
liminary tests are made. An energy density rescaling file might be applied at this point
accroding to certain parameters. Typically, config() or config pion() is called to initialize
the lattices, SPH particles are consequently created and assigned to the grids with their
respective velocity, energy and entropy values. Then the time loop begins to calculate the
hydrodynamic evolution. Here we come across two important subroutines: solvediff() and
lssf(). They are the meat and bread of SPheRIO. The subroutine solvediff() deals with
the EOM, using 2nd order Adams-Moulton method; lssf() handles the freeze-out. These two
subroutines have to be invoked at the same time, and each one depends on the result of the
other. This is because the freeze-out needs the information on the EOM, and this might be
affected by freeze-out when frozen or low temperature SPH particles are taken away from
the fluid. At the end of the hydrodynamical evolution, setevg() and evgen() are invoked
to treat the hadron emission and to pass the information back to the shell script. The HBT
radius is computed by evghbt(), as needed.

Initialization

The initialiation block, as the name self-explains, includes various subroutines which
carry out the initialization work of the code, for instance, to interpret the parameters of the
configuration file, to load appropriate EOS tables, to divide the space-time into lattice sites,
to assign initial value to physical quantities, to define the running debug level, etc.

The block contains the following subroutines: config(), config pion(), latt(),
loadeos(), machconeini(), modeprint(), newvel(), rfactor(), rfactorprint(),
rfactorset(), rfactor *(), seteosmode(), set flagce(), set flagxn(), setin(),
setin kodama(), setin pion(), setkappa(), setlog(), settautrans(), settempsph(),
settempsphdenovo(), settrinimode()

The subroutine loadeos() loads the EOM tables. The role of the subroutine config()
or config pion() is to divide the space-time into discrete lattices, each of which further
calls latt(). On the other hand, latt() has in itself a loop enumerating all the lattice
sites. This is when setin(), or setin kodama(), or even setin pion() is executed to
assign dynamical quantities (four-velocities) and thermodynamic quantities (entropy density,
energy density, volum, etc.) to the corresponding SPH particles sitting at each lattice
site. Other subroutines handle the initilization of additional parameters, such as freeze-out
temperatures, rescaling factor, initial transverse velocity, as well as to various flags.

The code SPheRIO provides three different methods for defining the IC.

⋄ The first one is to use the current setting of lattice sites. The user may define
• nxico, nyico, nzico ↔ number of sites,
• xminico, xmaxico, yminico, ymaxico, zminico, zmaxico ↔ initial size of the system, and
• tempoico ↔ initial time τ0 of hydrodynamic evolution.

Next, one should provide a file which contains the information on energy density (IcoE),
flavor density (IcoF ) and velocity distribution (IcoV ) on the lattice sites. The name of
the file can be passed to the code by the keywords: “fname ico desired filename”. The



8

structure of the file can be easily inferred from the transcript subroutine below, which would
read it.

open(97,file=fnio(1:nfnio),status=’old’)
read(97,*) iversn !Version of the file, irrelevant
read(97,*) laprojx,maprojx,latargx,matargx
!Atomic number and Mass of the incident nucleus and the target
read(97,*) engyx !Incident energy
read(97,*) bminimx,bmaximx,ikolmnx,ikolmxx
!Maximal and minimal value of impact parameter
read(97,*) tauicox !Initial time for hydrodynamic Evolution
read(97,*) iabs ninicon !Irrelevent, for compatibility with EPOS only
read(97,*) nxicox,nyicox,nzicox !Number of sites in x y z directions
read(97,*) xminicox,xmaxicox,yminicox,ymaxicox,zminicox,zmaxicox
!Initial size of the system
read(97,*) (((IcoE(ix,iy,iz),ix=1,nxico),iy=1,nyico),iz=1,nzico),
((((IcoV(i,ix,iy,iz),i=1,3),ix=1,nxico),iy=1,nyico),iz=1,nzico),
((((IcoF(i,ix,iy,iz),i=1,3),ix=1,nxico),iy=1,nyico),iz=1,nzico)
close(97,file=fnio(1:nfnio),status=’old’)

To explicitly verify if SPheRIO knows that the IC file is provided, the keyword “set
icomode 00” should be used. If nothing is ever assigned to icomode, the default value is 0.

⋄ The second method is to pass the variables through COMMON blocks defined in
epos.incico4. To make use of this “dangerous” option, the users should compile their own
code which implements the COMMON block and link it to SPheRIO (through Makefile).
This alternative makes it easier to connect SPheRIO directly to an event generator. In this
way, one does not need to write the IC into a file and later make SPheRIO read it. It is
more efficient, especially when one uses event by event IC. To inform SPheRIO that the IC
is passed using this method, use keyword “set icomode 01”. Warning: if icomode is set
to 01, but nothing is implemented for the COMMON block, there is no way that SPheRIO
could figure this out by itself, and in this case no error message will be triggered
directly.

⋄ The third method is to override the subroutine config override() of SPheRIO. It gives
the user the biggest freedom to define the IC from scratch. For instance, SPH particles don’t
have to be initially distributed uniformly in space. As a price to pay, the user must explicitly
define how to divide the lattice sites and also initialize and distribute SPH particles by hand.
Since the purpose of this subroutine is to be overridden by the user, the only communication
between the subroutine and the rest of the code is the interface of the subroutine, and it is
not recommend to utilize COMMON blocks to pass data. The present form of the subroutine
gives an example of what quantities are expected to be defined in it. To inform SPheRIO
that IC is provided by overriding config override(), the keyword “set icomode 02” should
be used.

4 The file is called epos.* since it adopts the standard used in EPOS



9

Hydrodynamic evolution

This block has two purposes. Firstly, to solve the hydrodynamic equation, i.e., Eq.(100)
of “Topics on hydrodynamic model of nucleus-nucleus collisions”, Braz. J. Phys. 35, 24
(2005) [arXiv: hep-ph/0407264]. Secondly, to maintain the SPH particle data in itself, and
other blocks such as freeze-out, particle splitting, link-list. etc. The code employs 2nd order
Adams-Moulton method (though it is named after Runge-Kutta, by a mistake) to solve the

second order ordinary differential equation. A nonlinear equation of β = ln(
√

1 + u2
T + uT )

is solved to obtain the four velocity (this is not mandatory, since one may derive the EOM

directly in terms of four velocity). The variable chosen to be solve is β = ln(
√

1 + u2
T + uT )

Since the entropy νi appears on both sides of the EOM, it is canceled out. For convenience,
the canonical momentum qi is defined as πi/νi.

The block contains the following subroutines: dqfn(), dqfn xy(), findbt(),
findbt xy(), firststep(), fldobsrv(), fldobsrv fin(), outp raw(), rung(), solvediff(),
tranisotropy(), trobsrv(), trobsrv old(), trobsrv pion()

The subroutine dqfn() is used to calculate the r.h.s. of the above mentioned Eq.(100).
The subroutine rung() implements the 2nd order Adams-Moulton method, which makes
use of numerical recipe rtflsp1(). At first step, taken for the first time, firststep() is
invoked to prepare the loop. And solvediff() controls overhead. To sum up, solvediff()
invokes firststep(), rung(), and dqfin() to solve the EOM, while maintenance of data is
taken care by itself. Two important subroutines dectrl() and dectrl off(), are embodied
in solvediff(), which we will come back into the discussion later, when discussing particles
splitting block.

Freeze-out

The freeze-out block implements different freeze-out scenarios, it calculates the freeze-out
surface dσµ among other things.

The block contains the following subroutines: checkce(), checknu(), checkxn(),
flintp(), lssf(), normal(), normal ce(), probce(), probce gen(), recordxn(),
recordxn inspector()

lssf() is the meat and potatoes, i.e., the fundamental ingredients, of the freeze-out block.
The subroutine lssf() describes the Cooper Frye freeze-out scenario within itself. It calls
checkce() to handle the continuous emission, and checkxn() to implement the chemical
freeze-out.

Hadron emission

The hadron emission block involves two parts. The first part uses statistical distribution
functions to estimate the number of each hadrons species. The subroutines responsible for
the first part are peso(), weigpr() and setevg().

weigpr() calculates the emission number of a specific hadron from a certain SPH particle.
peso() does pretty much the same thing with some approximation. The approximation in
peso() reads that the normal vector of freeze-out surface is timelike, therefore its module
is the volume of corresponding SPH particle. setevg() stores those obtained value.



10

The second part employs random number generator to produce the hadronic character-
istics, such as momenta, and therefore it is ready for the data to be directed to the output
subroutine or be passed to another code (e.g. it can be either NEXUS or THERMINATOR)
to do hadronic decay (Consult the next section for more details). These subroutines are
prodis(), pdmax() and evgen().

prodis() calculates the probability of the emission of a certain hadron with a specific
momentum, where pdmax() is employed to find its maximum. Both two subroutines are
invoked by evgen() together with the random number generator, it enumerates all SPH
particles as well as different species of hadrons, in other words, it generates the event as the
name self-explains.

One thing worth mentioning is that when HBT radius is calculated, the second part is
swtiched off to save CPU time, since this part of code will repeatedly be executed many
times when nfreeze is big. When estimating the HBT radius a particular method (see
below) is used to deal with hadronic emission.

Freeze-out infomation output

SPheRIO provides several different methods to output the information on the freeze-
out surface. The first catalogue supplies the freeze-out surface itself. For the time being,
SPheRIO only provides the freeze-out information in terms of the SPH degrees of freedom.
To activate this method use “write fzoutTable” in the OPTNS file, and utilize “fname fzout
the desired filename” to define the filename. On the contrary, use “read fzoutTable” to
read freeze-out surface information from a file, in this case, the hydrodynamic evolution will
be skipped by SPheRIO.

The second catalogue is of greater utility, since it prints out a list of hadrons emitted at the
freeze-out surface. Since there are several conventions for programatic particle identification,
SPheRIO makes some effort to implement the most popular conventions. Therefore, first use
“switch xell on” to switch the output on. Set “set ifzlistfmt 01” for using SPheRIO particle
table convention. In this convention, hadrons are identified using SPheRIO ID. Use “set
ifzlistfmt 02” for NEXUS/EPOS particle table convention. In this convention, hadrons are
identified using NEXUS/EPOS ID, and the output file meets the standard of NEXUS/EPOS.
Use “set ifzlistfmt 03” for THERMINATOR/SHARE particle table conventions. In this
convention, hadrons are identified using THERMINATOR/SHARE ID, and the output file
shall be processed by a slightly modified version of THERMINATOR/SHARE. Use “set
ifzlistfmt 04” for ROOT particle table convention (under development). Emitted hadron
list will also be available through the COMMON block in the near future.

HBT radius

The HBT block calculate HBT radius using the information on the freeze-out surface.
The block involves the following subroutines: corr(), evghbt(), fndk(), raplist()
Specifically, Eq.(120) and Eq.(122) of “Topics on hydrodynamic model of nucleus-nucleus

collisions” Braz. J. Phys. 35, 24 (2005) [arXiv: hep-ph/0407264] are used to calculate the
two particle correlation function C2(q, P ). A link-list method (see below) in rapidity space
is implemented in the subroutine raplist().



11

Link-list method

The goal of this block is to provide an efficient way to calculate any dynamical or ther-
modynamical quantity at any given point.

It contains the f bsqd(), bsqd xy(), fins()fins xy(), finsb gen(), finsb gen xy(),
mklt(), prcn()

The method can be found in the book “Numerical Recipes: The Art of Scientific com-
puting 3rd Edition” Cambridge University Press, ISBN-13 978-0-511-33555-6/ISBN-13 978-
0-521-88068-8. The subroutine mklt() builds the link-list, prcn() picks up nearby SPH
particles using the link-list, while among others, finsb gen() calculate the quantities at a
given point.

Particle splitting

Particle splitting is introduced because the SPH particles might not be evenly distributed
in space due to the hydrodynamical evolution. We should note that the kernel function
we employ expands 4hxy where hxy and heta measure the size of SPH particle on the
transverse and longitudinal direction. If in a cube of (4hxy)× (4hxy)× (4het), the number
of SPH particles is smaller than 64 (this estimate is not exact, though), the smoothness of
SPH formulation is questionable, especially when some SPH particles carry large entropy
(However, it is arguable whether it is the right way to heal the problem; an alternative
option is to make every SPH carry the same amount of conserved quantity, e.g., entropy, and
therefore no decay is necessary 5. Initially, the SPH particles are not uniformly distributed,
so that the number density of SPH particles is proportional to entropy density. In this case,
sometimes a very large number of SPH particles is needed to achieve the desired resolution).

decay(), dectrl(), dectrl off()
The subroutine dectrl() determines when the SPH particle splitting takes place, decay()

implements the splitting. On the other hand, the subroutine dectrl off() can be used to
skip particle splitting, for debugging purpose.

Kernel functions

krln()
The present kernel functions adopted by SPheRIO are based on cubic spline. They can

be found along with a few discussions in Eq.(39) in “A pedagogical tool using SPH to model
fluid flow past a system of cylinders”, by Brain Schlatter, Master’s thesis, Oregon State
University, (1999).

Equation of state

The subroutines in this block deal with EOS . See Section III for more details.
It contains the following subroutines: bdy0read(), bdyread(), digread(), eosph(),

eosph original(), eosph pion1(), eosph pion2(), eosph pion(), eosph pion bag1(),

5 This was carried out in another implementation of SPheRIO by Ph. Mote and T. Kodama.



12

eosph pion bag2(), eosph strangeness(), eosphdbg(), eosphtrials(), esxread(),
geteosesx(), geteosmix(), getesx(), gettmunew(), ingues(), mixdphs(),
mixread(), nxpd(), pdtable(), phsjdg1(), phsjdg2(), phsjdg1 original(), ph-
sjdg1dbg(), phsjdg2dbg(), phsjdgtrials(), rftzer(), readstb(), readtb(), thintp(),
thrread(), tmevol(), tmintp(), tmuread(), usrfun()

Several sets of pre-defined EOS are at disposal. They can be chosen through the
setting “set ieos an eos number”, where ieos is the keyword for the EOS setting, and
an eos number is the corresponding EOS index. The first set of EOS describes matter on
the hadronic side, by means of a hadronic resonance model with finite volume corrections,
and MIT bag model for quark gluon plasma (QGP) phase. The main part of observed res-
onances in Particle Data Tables are included in the hadronic phase. Use “set ieos 01” to
utilize this EOS . The second set of EOS is almost the same as the first set of EOS , except
that local strangeness neutrality is assumed to find the strangeness chemical potential. Use
“set ieos 02” to activate this EOS . By choosing “set ieos 0”, one selects a set of analytic
EOS with uses massless pion gas for the hadronic phase and the MIT bag model for QGP

phase. The option “set ieos 04” uses the EOS of massless pions (π+, π−, π0) for debugging
purposes.

The option “set ieos 07” activates a set of EOS inspired in lattice QCD6. The EOS defined
by “setieos 08” is essentially the same as in “set ieos 07”, except that local strangeness
neutrality is assumed. The options an eos number 07 and 08 are still under development
and will be available soon.

To supply a user-defined EOS , override “virtual” functions eosph override(), ph-
sjdg1 override() and phsjdg2 override() and apply “set ieos 99”. Therefore code will
make use of the above functions in place of the original eosph(), phsjdg1() and phsjdg2(),
consult Section III for more details.

Pure numerical recipes

The block contains those subroutines each of which has its own independent computa-
tional algorithms and usage, while they are employed as “black box” by various subroutines
from different blocks of SPheRIO.

findph(), findth(), gammln(), gasdev(), indexx(), itrp2d(), locate1(), locate(),
mnewt(), mnewtgetmu(), newton(), phif(), poidev(), polint11(), polint(), ran1(),
ran3(), rtflsp1(), rtflsp2(), rtnewt(), velequ()

In the coming Section IV, the subroutines will be discussed in more detail.

6 Y. Hama, R.P.G. Andrade, F. Grassi, O. Socolowski Jr., T. Kodama, B. Tavares and S.S. Padula, Nucl.

Phys. A744, 169 (2006)



13

II. THE OPTION FILE INTERFACE

The option file *.optns serves as an interface to pass parameters to the code at run-time.
For historical reasons, SPheRIO adopted the option file of NEXUS and went ahead to add
to it more features of its own.

In the following, all the keywords provided by SPheRIO are listed 7.
The elements of the list below show examples of MACRO definitions of centrality cor-

responding Au+Au collisions at RHIC which can be further used to define the centrality
windows customly adopted by PHOBOS or STAR collaborations. For illustrating the usage
of these MACRO definitions, let us take a look at them. “#define bim06 3.64” defines a
MACRO bim06 which value is set to 3.64, therefore, by “set bminim 0.0” (i.e., bmin = 0.0)
and “set bmaxim bim06 (i.e., bmax = 3.64), one sets the impact parameters of the collision
at the first PHOBOS centrality window: 0% - 6%. The code has been written in such a way
that it will automatically find and utilize the correct rescaling factor (to adjust the pseudo-
rapidity distribution of all charged particles), as well as the freeze-out temperatures, using
linear interpolation. Therefore, for selecting the desired centrality window, the procedure is
then to simply un-comment one of the lines in the option file below. For more information
read comment of ibugflg.

#define bim03 2.55 #define bim05 3.32 #define bim06 3.64
#define bim10 4.73 #define bim15 5.81 #define bim20 6.68
#define bim25 7.46 #define bim30 8.17 #define bim35 8.83
#define bim40 9.42 #define bim45 10.00 #define bim50 10.55
#define bim60 11.57 #define bim70 12.48 #define bim80 13.37
#define bim92 14.57

set laproj 79 set maproj 197 set latarg 79 set matarg 197
!!above statement set, from left to right, number of projectile protons to 79, number
of projectile nucleons to 197, number of target protons to 79 and number of target
nucleons to 197. Therefore it literally reads, Au-Au collisions.

set ecms 200.0
!!it sets the center-of-masscollision energy at 200A GeV

set nfreeze 10
!!it sets the number of MCs freeze-out procedures to 10, corresponding to each full
hydrodynamic evolution.

set tempoico 1.0
!!initial time τ of the IC when hydro takens over

set nxico 25 set nyico 25 set nzico 25
!!it sets the number of lattice sites in x, y and η direction respectively

set xminico -8 set xmaxico 8 set yminico -8 set ymaxico 8 set zminico -6 set zmaxico 6

7 Here some features are adopted or inspired by NEXUS/EPOS, credits are given to Klaus Werner and

co-authors



14

!!the initial system size in question, e.g. xminico means the low boundary in x
direction, zmaxico means the high boundary in η direction

fname ico ../optns/auau-epos-pj1.ico
!!ico file to read as the input IC

switch mprcsion off
!!run the code with the highest possible precision but very very slow

set hxy 1.0 set het 1.0
!!set hxy and het, the transverse and longitudinal sizes of SPH particles

set dtau 0.25
!!dtau = time step interval

set ibugflg 20
!!debugging/run-time mode switcher, ibugflg has the highest priority, it may override
any other parameters

!!00 - normal mode, optns file determines all the parameters, inital time, ther-
mal/chemical freeze-out temperatures and etc
!!01 - run the code with original EOS without strangeness and corrected equation
of motion
!!02 - run the code with new EOS with strangeness and corrected equation of
motion
!!03 - reserved
!!07 - reserved
!!08 - run the code with EOS of massless pions, the EOM will be solved only
on the x-y plane, and using the scaling solution for the η direction, one may
also use the switch “skip icotable” in the option file, since one must provide a
2-dimensional IC
!!09 - run the code with EOS of massless pions with bag model containing a first
order phase transition, using the Gaussian-like IC
!!10 - run the code with EOS of massless pions with bag model containing a first
order phase transition, using NEXUS IC
!!11 - run the code with new EOS with strangeness and using the Gaussian-like
IC
!!12 - run the code with new EOS with strangeness and using the NEXUS IC, it
outputs some informations on fluid evolution
!!13 - run the code with new EOS with strangeness and using the NEXUS IC, it
outputs more informations on fluid evolution
!!15 - run the code with EOS of massless pions, the EOM will be solved only in
two dimensions
!!20 - run the code with new EOS with strangeness and using the NEXUS IC,
the thermal/chemical freeze-out temperatures are automatically chosen by the
code, according to the impact parameters
!!21 - the same as 20, except that it is used to calculate v2 and the yields of some
particles are multiplied by a factor of 10
!!30 - run the code with original EOS without strangeness and original equation
of motion and core fuction



15

set iprtflg 9
!!iprtflg determines the debugging message output level, bigger number implies more
detailed info

set tempqmout 0.145
!!freezeout temperature for chemical freezeout

set tempfzout 0.135
!!it sets the temperature of thermal freeze-out, this value may be overridden by
ibugflg

set tempfinal 0.090
!!it sets the lowest temperature the fluid can reach, this value is essentially determined
by the boundary of EOS table

switch emcontinua off
!!run the code using thermal freeze-out scenario, this switcher has been modified from
the earlier version to match the style of the rest of the program

!switch emcontinua on
!!run the code using continuous emission scenario

set kappa 0.30
!!parameter kappa determines how easily a particle can escape from the fluid, see
eq.(123) of Yogiro’s paper: “Topics on hydrodynamic model of nucleus-nucleus colli-
sions”, Braz. J. Phys. 35, 24 (2005) [arXiv: hep-ph/0407264].

set idecomode 01
!!01 - isotropic original formulae for continous emission
!!02 - anisotropic momentum dependent formulae, momentum dependent formulae,
it determines how hadrons emit from the frozen-out SPH particles the first choice
“isotropic” uses regular isotropic formula, which takes into account fluid velocity,
momentum of emitted particle, isentropic surface and free Fermi/Boson distribution,
see eq.(111) of Yogiro’s paper: “Topics on hydrodynamic model of nucleus-nucleus
collisions”, Braz. J. Phys. 35, 24 (2005) [arXiv: hep-ph/0407264]. The second choice
takes into account that even the free Fermi/Boson distribution is not isotropic, it can
be expressed in terms of interaction distribution as ffree = CP/(1 − P )fint, where
P is the probability of emission and it is anisotropic, and C is a constant regarding
normalization, for details see comments of the code

set itrinimode 00
!!this swtcher provides user with some predefined IC to choose from, it has four
options, pure NEXUS IC, NEXUS plus some initial transverse velocity using two
different formulae and Mach Cone IC

!!00 - pure NeXus initial transverse boost
!!09 - NeXus+tanh() initial transverse boost
!!11 - a way of transverse boost using rapfactor
!!15 - Mach Cone IC



16

switch sphsplit off
!!turn off SPH particle splitting

switch freezeout on
!!to evoke the freeze-out process or simply skip it

!read fzoutTable - fname fzout ../optns/media-auau-pj1.fzo.data
!write fzoutTable

!!to assign the filename, fzout, to read/write from which contains the freeze-out
suface information in terms of SPH particles

switch quimfz on
!!employ chemical freezeout, when chemical freeze-out is on, the code further provides
four type of chemical freeze-out scenarios, namely

set iquimmode 06
!!01 - chemical and thermal freeze out of hyperon at hadron phase boundary
!!02 - chemical and thermal freeze out of hyperon at qgp phase boundary
!!03 - chemical and thermal freeze out of hyperon at temperature tempqmfzout
!!04 - chemical of hyperon at tempqmfzout, thermal freeze out at tempfzout
!!05 - scenario specifically for omega
!!06 - the same scenario as 04 but for all particles

switch ihbt off
!!when this switcher is on, it calculates HBT radius

set ieos 02
!!this parameter sets which EOS is to be used, it can be overridden by ibugflg

!!01 - MIT bag + hadron resonance without strangeness
!!02 - MIT bag + hadron resonance with strangeness
!!03 - MIT bag + massless pion
!!04 - massless pion gas

set ihydromode 00
!!00 - original mode, SPH decouples at tempfzout
!!01 - violent mode, SPH decouples at freeze-out surface
!!This parameter gives options to run the code using two different EOM. In the first
case, when it sets to zero the SPH particles continuous interacting with others even
after freeze-out in the second case, when it sets to 1, frozen-out SPH particles are
taken away from EOM, they remain their velocities when they decouple from the
fluid, although they are counted when calculating the probability of particle emission

set itrobmode 00
!!this parameter controls the level of outputs of information on the evolution of the
system the output file contains velocity, entropy density, temperature and other ther-
modynamic quantities of the fluid and SPH particles

!!00 - no output
!!01 - standard output at τ = 1, 3, 5, 10, output on x and y axis
!!02 - standard output at τ = 1, 2, 3, ..., output on x and y axis



17

!!08 - specific output for massless pion gas, output and raw output on transverse
plane, corresponding to ibugflg 08
!!09 - specific output at τ = 1, 4, 7, 10, raw output on x, y and r direction,
corresponding to ibugflg 09
!!12 - specific output at τ = 1, 3, 5, 10, output on transverse plane, corresponding
to ibugflg 12
!!13 - specific output at τ = 1, 2, 3, ..., output on x and y axis and raw output on
individual SPH particle, corresponding to ibugflg 13
!!14 - specific output at τ = 1, 2, 3, ..., output on transverse plane
!!15 - specific output for massless pion gas, corresponding to ibugflg 15

set idimension 3
!!3D calculation or 2D limit with specified IC

set iviscosity 01
!!00 - ideal hydro, algorithm 1: non-linear equation
!!01 - ideal hydro, algorithm 2: iteration
!!02 - bulk viscosity
!!03 - shear viscosity and bulk viscosity



18

III. CONVENTIONS OF EOS DATAFILE

The EOS data files are made more complicated than it would have to be. The reason is
that SPheRIO needs to know in which phase a certain SPH particle is located when dealing
with the freeze-out. (For example, in QGP phase the SPH particles do not suffer freeze-out
in “Continuous Emission” scenario)

The data files concerning EOS infomation are: bdy-hrg0.dat, bdy-qgp0.dat, bdy-
hrg.dat, bdy-qgp.dat, eos-eq.dat, eos-er.dat, eos-sq.dat, eos-sr.dat, mix-ee.dat,
mix-tp.dat, stabl1.dat, stabl2.dat and stabl3.dat.

The bdy-qgp.dat and bdy-hrg.dat contain the information about boundaries be-
tween QGP phase/mixed phase and hadronic phase/mixed phase. Both of them are one-
dimensional. I will take bdy-qgp as an example, because the data structures in both files
are very similar.
– The first line contains the number of columns, e.g., 200,
– The second line is just a comment line, however, please maintain it unchanged, since the
subroutine to read the file is not very smart.
– After that there are successive 200 lines, each of them contains 15 numbers, which are
* temperature (xtm) – the only variable since it is one dimensional
* baryon chemical potential (xmub)
* strangeness chemical potential (xmus)
* energy density on the QGP side (eedstqgp)
* entropy density on the QGP side (tpdstqgp)
* baryon density on the QGP side (bbdstqgp)
* strangeness density on the QGP side (ssdstqgp)
* strangeness fraction (= strangeness density / baryon density) on the QGP side (xfsqgp)
* pressure on the QGP side (ppdstqgp)
* energy density on the hadronic side (eedsthrg)
* entropy density on the hadronic side (tpdsthrg)
* baryon density on the hadronic side (bbdsthrg)
* strangeness density on the hadronic side (ssdsthrg)
* strangeness fraction (= strangeness density / baryon density) on the hadronic side
(xfshrg)
* pressure on the hadronic side (ppdsthrg=ppdstqgp)
If one draws the phase boundary in terms of temperature vs. baryon chemical potential,
there are two curves corresponding to the boundary of the QGP phase and hadronic phase.
This is the reason why two files are needed to store the information. In the case when
strangeness is not considered, the data in the two files are the same.

bdy-hrg0.dat and bdy-qgp0.dat store the information at T=0 of hadronic phase and
the QGP phase. Pratically, due to numerical issues (although one can solve the equations
strictly at T=0, at very small T it turned out to be difficult) the temperature was taken as
0.01GeV. Take bdy − qgp0 as an example.
– The first line contains the number of columns, e.g., 200.
– The second line is just a comment line, however, please keep it unchanged, since the
subroutine to read the file is not very smart.
– After there are other successive 200 lines, each of them containing 7 numbers. These are
* the temperature (xtm) – the only variable since it is one dimensional
* baryon chemical potential (xmub)



19

* strangeness chemical potential (xmus)
* energy density (eedstqgp)
* entropy density (tpdstqgp)
* baryon density (bbdstqgp)
* pressure (ppdstqgp)
In the QGP phase, the initial baryon density is not necessarily zero, so I start with a number

a little smaller than the that corresponding to the deconfinement transition, i.e., 0.001fm−3.
eos-eq.dat, eos-er.dat, eos-sq.dat, eos-sr.dat, mix-ee.dat and mix-tp.dat are the

files store the information in QGP and hadronic phases in terms of energy density/baryon
density or entropy density/baryon density.
– Taking eos-eq.dat, for example, e (of eq) stands for energy density, and q stands for
QGP phase, so this file contains the EOS information of QPG phase.
– The first line contains the numbers of two elements of the two-dimensional array, e.g,. 150
(the loops of baryon density) 150 (the loops of energy density)
– After that was successive 150×150 lines, each of them contains 7 numbers, they are
* energy density (edeq) – the inside (second) loop index, according to the file, it goes from
1.6GeV (phase boundary at rhob = 0) to 21GeV
* entropy density (sdeq)
* baryon density (rhobeq) – the outside (first) loop index, according to the file, it goes from
0.00001fm−3 to 2.5fm−3; note that the pace was not equally divided
* pressure (ppeq)
* temperature (tteq)
* baryon chemical potential (mubeq)
* strangeness chemical potential (museq)

For the file eos-sq.dat, the data are orgnized in the same order, except one should
understand it as
* energy density (edsq)
* entropy density (sdsq)– the inside (second) loop index
* baryon density (rhobsq) – the outside (first) loop index
* pressure (ppsq)
* temperature (ttsq)
* baryon chemical potential (mubsq)
* strangeness chemical potential (mussq)

The files stabl1.dat, stabl2.dat and stabl3.dat concern the particle emission only so,
in principle, they do not need to be modified when one does not consider strangeness or
other conserved charges. Note that some data in the tables overlap with one another, the
names of the variables are adopted from the subroutine readtb(). The conventions are as
follow,
* temp – temperature
* chemb – baryonic chemical potential
* utb – chemical potential of proton divided by temperature
* utab – chemical potential of proton-bar divided by temperature
* denom – the correction factor on the denominate, when involving finite volume correction.
See formulae in“Topics on hydrodynamic model of nucleus-nucleus collisions”, Braz. J. Phys.
35, 24 (2005) [arXiv: hep-ph/0407264]. It is worth noting that finite volume correction
eq.(28-29) of this article are used, that’s why utb! = −utab
* ut – chemical potential divided by temperature



20

* mt – mass divided by temperature
* xintg – baryonic number density divided by temperature cube This table is used to save
time in the calculation, note xintg is a quantity that stays constant when ut and mt are
given

xx T - temperature xx ub - baryonic chemical potential xx P - pressure.
The dimension of the table are determined by ntb1x and ntb1y, volume corrections were
considered.

In the new version of SPheRIO I added data of chemical potential and modified some
structure of the last three tables as well as removed some overlapped data. But the basic
idea remains the same.



21

IV. FUNCTION AND ALGORITHM OF SUBROUTINES

In the following, we will discuss the function and algorithm of each subroutine. Some
efforts are made to adopt the comment style of “Numerical Recipes: The Art of Scientific
computing 3rd Edition” Cambridge University Press, ISBN-13 978-0-511-33555-6/ISBN-13
978-0-521-88068-8., i.e., instead of telling trivial detials about what each statement line is
doing, we try to focus on how the subroutines fit and serve in the whole program and why
certain algorithm is employed.

Some in-line comments can be found in SPheRIO’s source files and updates are logged
on top of the subroutines.

Initialization

rfactor *(), config(), config pion(), latt(), loadeos(), machconeini(), mod-
eprint(), newvel(), rfactor(), rfactorprint(), rfactorset(), seteosmode(),
set flagce(), set flagxn(), setin(), setin kodama(), setin pion(), setkappa(), set-
log(), settautrans(), settempsph(), settempsphdenovo(), settrinimode()

config() divides the space-time into discrete lattices. The range of space-time under
consideration can be readjusted in accordance with the value of bugflg, since bugflg has a
higher priority than the optns settings. However, the total number of initial SPH particles
is determined by nxico, nyico and nzico. These numbers are adopted by SPheRIO as pa-
rameters. In case one wants to change them, edit NEXUS’ file nexus.incico. latt() is called
at the end of subroutine. The program structure between config(), latt() and setin() is
to be improved.

config pion() serves in the same way as config(), except that it divides space-time with
cylindrical symmetry and it implements the function of latt() and setin() within itself. For
the time being, the subroutine is used in the case of massless pions, however it is easy to be
modified and applied to different situations.

latt() has within itself a loop enumerating all the lattice sites, this is when setin() or
setin kodama() or setin pion is invoked. These subroutines calculate and assign dynamic
quantities (four velocity) and thermodynamic quantities (entropy density, energy density,
volumn and etc) to the corresponding SPH particle sitting on the very lattice site. Then the
total number of SPH particles is estimated and passed to Nsp(1). If one calcuates “Mach
Cone’, the subroutine machconeini() is invoked to distribute an extra SPH particle on top
of others.

setin() calculates dynamic quantities (four velocity) and thermodynamic quantities (en-
tropy density, energy density, volumn and etc) at a given lattice site using the NEXUS initial
conditions. Firstly, newvel() is called to solve the four velocity by the equation T µ

ν uν = ǫuµ.
The resulting velocity is used to calculate flavor charge IcoF and invariant energy IcoE.
Then the rescaling factor() is applied. Baryon density, electric charge density, strangeness
density are evaluated. If an SPH particle stays beyond the boundary of EOS (its phase is
indeterminable), it is thrown away. If the temperature of SPH particle is lower than the
freeze-out temperature Tf , but higher than the EOS table limit, its properties will be stored
in the “ic” arrays for future use. This particle is then excluded from EOM. Some initial
transverse boost profile is applied according to the value of “itrans”.



22

rfactor() is an energy rescaling factor as a function of spatial coordinate eta. The
function calls one of different implementations rfacor *() according to the value of index
variable irft. When irft does not match any value in a pre-defined list, an error echos and
the program halts.

rfactor *() implements the rescaling factor. For instance, rfac-
tor bug20 t1a0 mus js1() is used when bugflg = 20, τ0 = 1.0, EOS with strangeness,
in the first STAR centrality window 0 - 5%. rfactor unit() is a trivial case where the
rescaling factor is a constant, 1.

rfactorset() is executed before that rfactor() is invoked by setin(). Its goal is to
assign a correct value to irft according to collision energy, impact parameters, τ0, freeze-out
scenarios and ibugflg. What we intended is to make the choice of rfactor as automatic as
possible, obviously, it didn’t work out very well. rfactorset() and rfactor() look fat and
they are difficult to maintain.

loadeos() loads EOM tables into the code according to ieosmode.
seteosmode() is executed before loadeos(), it determines the value of ieosmode by

bugflg.
machconeini() creates an heavy SPH particle with a different velocity and entropy on

top of the IC generated by setin(). It is used to creat an initial conditions for the study of
“Mach Cone”.

modeprint() prints the de facto value of all the major parameters in the initilization
block into the main surveillance file ztr.data.

newvel() solves the four velocity by the equation T µ
ν uν = ǫuµ.

rfactorprint() prints out the function of rescaling factor vs. eta, for debugging purpose.
set flagce() and set flagxn() set initial “0′ to freeze-out flags if lgce and if lgxn.
setkappa() sets the value of “kappa”, the parameter in Eq.(123) of “Topics on hy-

drodynamic model of nucleus-nucleus collisions” Braz. J. Phys. 35, 24 (2005) [arXiv:
hep-ph/0407264].

setlog() resets all the log files.
settautrans() sets τ0, the initial time when NEXUS hands down the initial conditions,

and SPheRIO starts the hydro evolution.
settempsph() sets thermal/chemical freeze-out temperatures accroding to optns and

freeze-out scenarios.
settempsphdenovo() automatically readjusts the thermal/chemical freeze-out temper-

atures according to the value of bugflg.
settrinimode() determines the initial transverse boost velocity and new EOM scenario

where SPH particles are/not taken away from fluid when they are frozen out.

Hydrodynamic evolution

dqfn(), dqfn xy(), findbt(), findbt xy(), firststep(), fldobsrv(), fldobsrv fin(),
outp raw(), rung(), solvediff(), tranisotropy(), trobsrv(), trobsrv old(), trob-
srv pion()

solvediff() solves the hydrodynamic equation Eq.(100) of “Topics on hydrodynamic
model of nucleus-nucleus collisions” Braz. J. Phys. 35, 24 (2005) [arXiv: hep-ph/0407264].
It employs 2nd order Adams-Moulton method to solve the second order ordinary differential
equation. To obtain velocity from momentum, a nonlinear equation is made use of (In fact,



23

this is not necessary since one may derive the EOM in terms of uT). In the nonlinear equa-

tion, the variable chosen to be solve is β = ln(
√

1 + u2
T +uT ). β goes to infinite when velocity

approaches the speed of light, hence the choice of beta ensures the precision at high velocity
region. Since νi cancels on both sides of EOM, for convenience, the canonical momentum q
is defined as pii/νi. The subroutine also does maintenance of SPH particle data for itself and
other blocks such as freeze-out, particle splitting, link-list and etc. In the follows,, we explain
how the subroutine works. First, firststep() is invoked to do some initialization. ihdfull
and ihdmode are checked here and from time to time later on to implement the new EOM.
The new EOS works by making a link-list excluding those frozen-out particles. ”ihdmode”
determines whether new EOM optns is turned on, ihdfull indicates at run-time whether
one should build the link-list with/not those frozen-out particles. The information on SPH
particles of two time steps in the past is stored in arrays with “oflg” being -2 and -1. This
is not because we make use of a 2nd method to solve EOM but that thermal freeze-out em-
ploys three point interpolation. Particle decay is treated by dectrl() or dectrl off() before
the time evolution takes place. The Adams-Moulton method is implemented in two steps
corresponding to two instances τ and τ + dτ . In the first step, “oflg” is set to 1, mklt(),
prcn(), fins(), bsqd() are invoked to update the link-list, and compute the thermodynamic
quantities of each SPH particle. dqfn() is used to evaluate the r.h.s of Eq.(100). rung()
calcuates dynamic quantities. In the second step, the code repeats itself except “oflg” is
set to 2 and the time τ evolves. Then the SPH particles are sorted using indexx() in terms
of temperature in decreasing order. Since each SPH particle in principle will be assigned to
a different index number, the father-son relationship between SPH particles (due to particle
splitting) has to be carefully taken care of. In the end, low temperature (T < Tfin) SPH
particles are cut away from the EOM. Throughout the subroutine, status of SPH particles
as well as total entropy and energy conservation are verified, and the results are directed to
the surveillance file ztr.data.

Here is a list of EOM arrays used to store information on SPH particles during the hydro
evolution. Wtih the exception of Nsp(oflg) being the total number of SPH particles in EOM,
all the rest of them share the same form.

EOM Array Name() := EOM Array Name(oflg, EOM SPH particle index),
where “oflg” is the status flag: -2 and -1 are used in interpolation of Cooper Frye, 0 is

reserved for temporary storage like sorting, 1 and 2 are used in 2nd order Adams-Moulton
method. xx()=xsph(1) x coordinate, yy()=xsph(2) y coordinate, et()=xsph(3) eta co-
ordinate, bt()=rsph(1) beta, ph()=rsph(2) phi, al()=rsph(3) alpha, sn() entropy, br()
baryon number, sr() strangeness charge, qr() electric charge, ss() proper entropy density,
bd() proper baryon density, sd() proper strangeness density, qd() proper electric charge
density, mbxn() baryon chemical potential of chemical freeze-out, msxn() strangeness
chemical potential of chemical freeze-out, tempxn() temperature of chemical freeze-out,
uxn() contracovariant four velocity corresponding to ufcc not ufrs.

firststep() does the initialization. It sorts SPH particles in terms of temperature and
prints out run-time value of some quantities in ztr.data.

dqfn() evaluates the r.h.s of Eq.(100), with dqfn xy() being the 2D implementation of
dqfn().

rung() implements the 2nd order Adams-Moulton method (though it is named after
Runge-Kutta by a historical mistake). The subroutine calculates the dynamic quantities of
SPH particles. It first computes the momentum q, and add to it dq obtained by dqfn().
Then rtflsp1() is employed to solve the equation of beta findbt(). With beta obtained,



24

other dynamic quantities like vx, vy, ve, alpha, phi can be acquired easily. Here is a list
of definitions of the variables envolved. rsph(1) = β = ln(

√

1 + u2
T + uT ), rsph(2) = φ =

atan(vy/vx), rsph(3) = α = 1/2 ln((1 + τve)/(1− τve)). It is easy to verify that four veloc-
ity can be expressed in terms of rsph arrays: u0 = cosh(rsph(3) − xsph(3)) cosh(rsph(1)),
ue = sinh(rsph(3) − xsph(3)) cosh(rsph(1))/τ , ux = cos(rsph(2)) sinh(rsph(1)), uy =
sin(rsph(2)) sinh(rsph(1)).

findbt() is the equation of beta, with findbt xy() being its 2D version.
fldobsrv() and fldobsrv fin() print out longitudinal velocity (alpha) distribution of

SPH particles at the beginning and end of hydro evolution.
outp raw() prints out transverse spatial distribution of SPH particles.
tranisotropy() computes momentum anisotropy as a function of time.
trobsrv(),trobsrv old(), trobsrv pion() print out transverse distribution of thermo-

dynamic quantities. The difference between the three subroutines is how to evaluate the
quantity at a given spatial point.

Freeze-out

checkce(), checknu(), checkxn(), flintp(), lssf(), normal(), normal ce(),
probce(), probce gen(), recordxn(), recordxn inspector()

lssf() is the meat and potatoes of freeze-out block. lssf() treats Cooper Frye freeze-
out scenario within itself, it calls checkce() to handle continuous emission, checkxn() and
recordxn() to observe chemical freeze-out. Here is how it works. checkxn() and checkce()
are called first off. The two subroutines check SPH particles one by one to see if they meet
the criteria of freeze-out. If so, the freeze-out flags (if lgce and if lgxn) of those particles
switch from ”0” to ”1” to signal for further treatment. After that, it is a check point of‘
ihdmode and ihdfull for the new EOM. Then it comes to two successive blocks to handle
continuous emission and Cooper Frye. Since the structures of the two blocks are very similar,
we will only focus on the first block of continuous emission. First, the freeze-out flag if lgce
switches from ”1” to ”2” to indicate that SPH particle has been taken care of. Information on
dynamic quantities (coordinate, velocity) and thermodynamic quantities (entropy, baryon
number and their densities, as well as temperature) on freeze-out surface is copied from
EOM arrays to freeze-out arrays. The copies are made first for continuous emission then
for chemical freeze-out, if the operations are legitimate. The covariant normal vector of
freeze-out surface is evaluated by normal ce() and stored, as well as covariant four vector
sfrs (It is the term in the summation on the r.h.s of Eq.(111) excluding contravovariant
momentum p and statistical distribution f, we will refer to it as normal flow thereafter) .
The difference between the block of kinematic freeze-out and continuous emission is that it
employs three point to calculate the quantities on freeze-out surface. To meet the kinematic
freeze-out criteria, the SPH particle has to stay below freeze-out temperature Tf for two
successive time steps. The subroutine comes to end with another check point of ihdmode
and ihdfull for the new EOM.

Here is a list of freeze-out arrays used to store information on freeze-out surface. All of
them share similar form.

FO Array Name(∗) := FO Array Name(∗, FO SPH particle index).
xfrs(0) τ , xfrs(1) x coordinate, xfrs(2) y coordinate, xfrs(3) eta coordinate, rfrs(1)

β, rfrs(2) phi, rfrs(3) alpha, ssfz() entropy density, snfz() entropy, bnfz() baryon num-
ber, mfrs() baryon chemical potential, msfrs() strangeness chemical potential, edfz() en-



25

ergy density, bbfz() baryon density, tempfz() temperature, nrfz(0 − 3) normal vector,
ppfz() probability of escape via continuous emission, sfrs(0 − 3) normal flow, mfrsxn()
baryon chemical potential of chemical freeze-out, msfrsxn() strangeness chemical potential
of chemical freeze-out, tempfrsxn() temperature of chemical freeze-out, ufrsxn() uxn of
chemical freeze-out.

checkce() invokes probce() to calculate the escape probability of SPH particle and
make use of MC to decide whether an SPH particle freezes-out. The new EOM are also
implemented in this subroutine. When calculation the escape probability, all particles should
be taken into account, thus ihdfull is set to 1, after that, ihdfull is switched back to 0.

probce() evaluates the escape probability of a given SPH particle. It first calculates the
percentage of escaping particles pp using a momentum independent approximation Eq.(123).
Its first order derivative measures the rate of SPH particle freezing. Taking into consideration
that we only select from the free SPH particles in EOM, a factor 1/(1 − pp) is included.

probce gen() returns the escape probability of a given coordinate, in stead of a SPH
particle, in this sense this subroutine has more general usage.

checkxn() verifies if a SPH particle suffers chemical freeze-out. If it does, the flag if lgxn
is set to 1 and recordxn() is invoked to store the information. There are several senarios
of chemical freeze-out, chemical freeze-out may take place on phase boundaries or at a fixed
temperatures.

recordxn() makes copy of quantities of chemical freeze-out particles into the arrays
with keyword xn. It uses two point interpolation if chemical freeze-out takes place on phase
boundaries, and three point interpolation is employed if chemical freeze-out temperature is
adopted. The latter case uses the same algorithm as flintp(). if lgxn is set to 2.

normal ce() evaluates the covariant normal vector of freeze-out surface, it is obtained
by evaluting the gradient of isentropic surface. It is straightforward to verify the formulae
used in the code, we only note here that derivative of γ = cosh(al − eta) cosh(bt) on the
denominate results in an extra term which presents itself at the end of the subroutine.

normal() is similar to normal ce() except that it calculates the normal vector of
isotherm.

flintp() does a three point interpolation to extract the value of thermodynamic quantities
at the thermal freeze-out temperature.

recordxn inspector() is a surveillance script check whether recordxn() gives consistent
results.

Hadron emission

checkodd(), checkomg(), checkv2(), density(), evgen(), lorenz(), pdmax(),
peso(), pesotest(), pesotrials(), prodis(), rot(), setevg(), setfac(), setnex(), set-
tot(), setus(), weigpr()

setevg() uses statistical distribution function to estimate emission number of each species
of hadrons, energy conservation is not explicitly taken into account here. The subroutine
starts a loop to enumerate all the SPH particles, and evaluates the emission number wg()
for each species using peso() or weigpr() times a volume correction factor obtained by
setfac(). Then the emission numbers are summed up with respect to all SPH particles. If
a frozen-out SPH particle is not in the hadronic phase, a correction factor is applied. The
results are stored in ntot() array.



26

evgen() employs random number generator to produce the hadrons, and the data are sent
back to NEXUS. One thing worth mentioning is that when HBT radius is calculated, the
evgen() is skipped to save CPU time, since this part of code will repeatedly be executed
many times when nfreeze is big. HBT radius has its own method to deal with hadron
emission. In the first place, settot() is invoked to transverse ntot() into an integer taking
into account statistical deviations. prodis() is used to calculate the emission probability of a
hadron with a certain momentum, where rot() and lorenz() help to transfer the momentum
into laboratory frame. If the hadron survives the random draw ran1(), it is accepted and
setnex() passes its information to NEXUS.

setnex() sends the data of emitted hadrons to NEXUS through common arrays.
checkodd(), checkomg(), checkv2() check whether a hadron satisfies certain proper-

ties. checkodd() checks if the hadron is a strange particle, checkomg() checks if it is Ω
and checkv2() checks if the particle is proton or anti-proton.

rot() calculates the momentum of hadron in proper frame, but along the directions of
axes in laboratory frame, which eases the job of lorenz()

lorenz() carries out the Lorentz transformation from proper frame to laboratory frame
of a hadron emitted from a given SPH particle. The input four momentum is ppr(), the
output variable is plb().

prodis() evaluates the emission probability of a hadron. Anisotropic formulae are
adopted in the present version.

pdmax() evalutes the maximum of probability of hadrons emitting from a given SPH
particle. They do their work in a rough way, the present algorithm is to be improved.

peso() estimates the emitting hadron number using approximating statistical distribu-
tion. The momentum integral is carried out using extended Simpson’s rule (see “Numerical
Recipes”).

pesotest() and pesotrial() are debugging subroutines.
density() calculates the density of hadron by its chemical potential mass and tempera-

ture using Gaussian Quadratures (See “Numerical Recipes”)
setfac() evalutes the volume correction factor of emission number of hadrons.
weigpr() evaluates the emitting hadron number using Eq.(111), where a part of r.h.s. of

equation is already stored in the array sfrs() and made use of. The momentum integral is
carried out by extended Simpson’s rule.

HBT radius

corr(), evghbt(), fndk(), raplist()
Eq.(120) and Eq.(122) of the paper “Topics on hydrodynamic model of nucleus-nucleus

collisions”, Braz. J. Phys. 35, 24 (2005) [arXiv: hep-ph/0407264] are used to calculate
the coefficient C2. A link-list method in rapidity space is implemented in the subroutine
raplist().

Link-list method

bsqd(), bsqd xy(), fins()fins xy(), finsb gen(), finsb gen xy(), mklt(), prcn()
The method can be found in Numerical Recipe book. The goal of this block is provide

a efficient way to calculate any dynamic or thermodynamic quantity at any given point.



27

subroutine mklt() is to build the link-list, prcn() is to pick up nearby SPH particles using
the link-list, while finsb gen() among others is to calculate the quantities at a given point.

Particle splitting

decay(), dectrl(), dectrl off()
Particle splitting is introduced due to the fact that SPH particle might not be evenly

distributed in space due to the hydro evolution. Note that the kernel function we employed
expands 4hxy. If in a cube of (4hxy)2(4het), the number of SPH particles is smaller than 64
(this estimation is not exact though), the smoothness of SPH formulation is questionable,
especially when some SPH particles carry large entropy. (It is arguable whether particle
splitting is the right way to heal the problem. An alternative option is that every SPH
carries the same amount of conserved quantity eg. entropy and there is no decay. Initially
SPH particles are not uniformly distributed, that the number density of SPH particles is
proportional to entropy density. In this case, sometimes a very big SPH particle number
is needed to achieve desired resolution.) dectrl() determines when SPH particle splitting
takes place, decay() implements the splitting, dectrl off() is a subroutine to skip particle
splitting for debugging purpose.

Kernel functions

krln()
The present kernel functions adopted by SPheRIO are based on cubic spline. They can

be found along with a few discussions in Eq.(39) in the article “A pedagogical tool using
SPH to model fluid flow past a system of cylinders” by Brain Schlatter.

Equation of state

bdy0read(), bdyread(), digread(), eosph(), eosph original(), eosph pion1(),
eosph pion2(), eosph pion(), eosph pion bag1(), eosph pion bag2(),
eosph strangeness(), eosphdbg(), eosphtrials(), esxread(), geteosesx(), ge-
teosmix(), getesx(), gettmunew(), ingues(), mixdphs(), mixread(), nxpd(),
pdtable(), phsjdg1(), phsjdg2(), phsjdg1 original(), phsjdg1dbg(), phsjdg2dbg(),
phsjdgtrials(), rftzer(), readstb(), readtb(), thintp(), thrread(), tmevol(),
tmintp(), tmuread(), usrfun()

See Section III.

Pure numerical recipes

findph(), findth(), gammln(), gasdev(), indexx(), itrp2d(), locate1(), locate(),
mnewt(), mnewtgetmu(), newton(), phif(), poidev(), polint11(), polint(), ran1(),
ran3(), rtflsp1(), rtflsp2(), rtnewt(), velequ()

There are remarks on top of each subroutine, please read corresponding chapter in Nu-
merical Recipe book for details.



28

Programming style and convention

The version number of SPheRIO is defined in its main program, eg. PARAMETER
(version=’Version 200806021200BR’) Each subroutine starts with a brief log on its functions
and updates, it looks like the following

CCC #################...
CCC eosph.f controls everything for EoS in SPheRIO
CCC gf: 1- energy density, 2- entropy density
CCC eos(1)= energy density...
CCC eos(2)= entropy density...
CCC eos(3)= baryon density...
CCC eos(4)= pressure...
CCC eos(5)= temperature...
CCC eos(6)= baryon chemical potential.
CCC eos(7)= strangeness chemicalpotential –¿ to incorporate strangeness
CCC #################...
CCC last updated 06122007
CCC incorporated flag “ieosmode”
CCC
CCC last updated 03052007
CCC incorporated some debugging statements
CCC
CCC last updated 09122006
CCC #################...
It is noting that a separating line CCC ####... starts with CCC and three blanks and

65 successive #s



29

GLOSSARY

Conventions: throughout this text, we have been using bold letters to indicate subrou-
tines and italic type letters to indicate variables, it is adopted in following table. Note:
while the following table is not fully completed, please use the SEARCH function of any text
editor to locate where a specific function is evoked via the keyword “call function name()”,
or SEARCH the name of the function, “function name()”, in this document for its algo-
rithm and usage.

Name Where it is called What it does

config() - initializes the lattices

config pion() - initializes the lattices

dectrl off() - skips particle splitting for debugging purposes

latt() - configures all the lattice sites

loadeos() - loads the EOM tables

machconeini() - sets Mach Cone IC

modeprint() - prints parameters and other infomation

newvel() - redefines velocities of SPH particles

rfactor() - entry of longitudinal energy rescaling

rfactorprint() - prints information on rfactor()

rfactorset() - cofigures longitudinal energy rescaling

rfactor *() - parameterizes longitudinal energy rescaling

seteosmode() - sets ieos

set flagce() - sets if lgce

set flagxn() - sets if lgxn

setin() - configures each SPH particles

setin kodama() - configures each SPH particles

setin pion() - configures each SPH particles

setkappa() - sets kappa

setlog() - sets log file

settautrans() - sets tauico

settempsph() - sets tempfzout tempfinal tempqmout

settempsphdenovo() - sets tempfzout tempfinal tempqmout

settrinimode() - sets ihdfull



INDEX

Brain Schlatter, 10

30


