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High Energy Physics (HEP) explores the elementary particles, which are
the fundamental constituents of matter. HEP experiments led to important
discoveries, such as the detection of the Higgs boson at the CERN Large
Hadron Collider - LHC. The High-Luminosity LHC (HL-LHC) is the next chal-
lenge in the HEP scenario, bringing the collider’s instantaneous luminosity to
20 Hz/nb and increasing in 5 times the amount of additional pp interactions
in the same or neighboring bunch crossings, referred to as pileup (PU). In
order to deal with the increased amount of generated data and the complex-
ity of the simulations, new techniques and frameworks have to be deployed
and/or developed. In that scenario, the Deep Neural Networks (DNN) rev-
olution can make a significant impact on HEP. These techniques are most
promising when there are both a large amount of data and a high number
of features. This project proposes an exploration of the usage of advanced
machine learning techniques at the HL-LHC.
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1 Introduction
High Energy Physics (HEP) explores the elementary particles, which are the fundamental con-

stituents of matter, and their interactions. Elementary particles are the underlying structure at the
inner kernel of matter and, at the same time, plays an essential role in the evolution of the Universe.
The last century has shown that collider accelerators have been among the most powerful tools used to
explore the deep structure of matter that enabled the development of a universal quantum field theory
— the standard model. HEP experiments led to important discoveries that go from the identification of
heavy quarks, passing by the discovery of the W± and Z0 bosons, up to the breakthrough represented
by the recent discovery of the Higgs boson at CERN [1, 2], evidence for the Brout-Englert-Higgs
mechanism through which fundamental particles acquire their mass.

The Large Hadron Collider (LHC) at CERN, the most advanced facility in operation, has opened
new opportunities to explore the energy frontiers of physics, colliding protons at 13 TeV, which allows
to explore distances of 10-18 meters. The collider has two large general-purpose detectors, ATLAS (A
Toroidal LHCApparatuS) [3] and CMS (Compact Muon Solenoid) [4], operating on the Swiss-French
border near Geneva, Switzerland. Both collaborations are examples of truly international endeavors.
For instance, the CMS collaboration comprises more than 210 institutions from 48 countries and has
become a very successful example of large international cooperation. The impact, in terms of scientific
results, can be attested by the number of papers that CMS has published: over 750 articles based on
collider data since 2010, including the one that reported the discovery of the Higgs boson, which has
almost 8,500 citations and led to the award of the 2013 Nobel Prize in Physics. As of this writing, the
LHC has just finished its second operation run (Run 2) [5], having delivered more than 150 fb-1 of
13 TeV pp collision data to both ATLAS and CMS.

The LHC has, unsurprisingly, been put on the center stage of the European Strategy for Particle
Physics [6]. It is also a highlight of the recent report from the Particle Physics Project Prioritization
Panel (P5) from the U.S. Department of Energy [7]. The High-Luminosity LHC (HL-LHC) [8] is the
next step of this strategy, bringing the instantaneous luminosity delivered to experiments to 20 Hz/nb.
Over the proposed operation period of the HL-LHC, from 2026 to 2035, this will entail a twenty-fold
increase of the produced data. All aspects of the experiments will have to undergo essential improve-
ments, in what is known as the Phase-II upgrade, to cope with the increase of luminosity and to survive
the radiation levels that the detector will experience during the HL-LHC period. The LHC schedule,
including the HL-LHC era, is shown in Fig. 1. One particular aspect of the HL-LHC operation will be
the much higher occurrence of additional pp interactions in the same or neighboring bunch crossings,
referred to as pileup (PU). The average pileup on standard HL-LHC can reach up to 200, in compar-
ison to PU∼ 40 observed during the LHC Run 2. This leads to much more complex events that are
difficult to treat at every level – simulation, data acquisition, reconstruction and analysis. A simulated
HL-LHC event is shown in Fig. 2, extracted from Ref. [9].

In order to seize the opportunities and address the challenges posed by the HL-LHC, the HEP
field is moving closer to the frontier of information technology and computer science [10]. The new
techniques, tools and frameworks from the field of machine learning (ML) are ideally suited to the
HL-LHC era [11]. The usage of ML techniques is not foreign to HEP; indeed, the ROOT data analysis

2



LHC b b b b b b b b b b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Injectors o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

LHC o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Injectors o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

LHC o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Injectors o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o b b b b b b b b b b b b o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o

Q1 Q2 Q3 Q4 Q1Q2 Q3 Q4 Q1 Q2 Q3
2035

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q4Q2 Q3 Q4 Q1 Q2 Q3Q4

Q1 Q2 Q3 Q4

2029 2030 2031 2032 2033 2034

Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2
2022 2023 2024 2025 2026 2027 2028

Q1 Q2 Q3 Q4 Q1 Q2Q3 Q4 Q1 Q2 Q3 Q4Q1 Q2 Q3 Q4 Q1 Q2
2020 2021

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q3 Q4
2015 2016 2017 2018 2019

PHASE$1$

Run&2&

Run&3&

Run&4&

LS&2&

LS&3&

LS&4& LS&5&

PHASE$2$

LS&4& LS&5&Run&5&

LS2& &starEng&in&2019 &=>&&24&months&+&3&months&BC&&
LS3 &LHC:&starEng&in&2024& &=> &30&months&+&3&months&BC&

&Injectors:&in&2025 &=> &13&months&+&3&months&BC&

Beam&commissioning&

Technical&stop&

Shutdown&
Physics&LHC$roadmap:$according$to$MTP$2016>2020$V1$

Run&3& Run&4&

HL>LHC$installaGon$

LIU$installaGon$

Figure 1: Long-term LHC Schedule including the Physics Programs (Run), Long Shutdown (LS),
Beam Commissioning and Technical Stops.

framework has incorporated a Toolkit for Multivariate Analysis (TMVA) since 2013 [12]. Solutions
based in machine learning have been extensively used in the LHC experiments, for identification of
heavy-flavour jets [13], reconstruction and identification of 𝜏 leptons [14], energy reconstruction of
electrons [15] and even high-level physics studies like searches for resonant 𝑡𝑡 [16] and supersymmet-
ric partners of the top quark [17]. The Deep Neural Networks (DNN) revolution [18] has, however,
made significant impact on HEP; it is particularly promising when there are both a large amount of
data and a high number of features, as well as symmetries hidden in the data and complex nonlinear
dependencies between inputs and outputs. All those are primary characteristics of HEP experiments’
data and the HL-LHC will be no exception.

Figure 2: Simulation of a 𝑡𝑡 event, at average pileup of 200 collisions per bunch crossing. Image
courtesy of the ATLAS Collaboration [9].

This project proposes an exploration of the usage of advanced machine learning techniques at
the HL-LHC. Our primary goal will be the exploration, study, development and deployment of those
techniques for simulating and analyzing HL-LHC pp collision events in the HL-LHC conditions. This
work will be done in the context of the CMS collaboration; however, the results obtained during this
project will be applicable to all sorts of HEP experiments, including future collider [19, 20] and non-
collider experiments [21, 22].
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2 Methodology
The methodology to develop this research will be focused on applied Artificial Intelligence; the

scientific focus of the project is still High Energy Physics. In this sense, we plan to develop new
machine learning models using the most powerful and popular frameworks for machine learning,
such as Keras [23] and Tensorflow [24]. For the hardware resources needed for that endeavour, we
will leverage the computing resources at the Center for Scientific Computing (NCC-Unesp) [25].

2.1 Generative Models for Detector Simulation

We are particularly interested in investigating ways to speed-up the simulation methods for the
benefit of the HEP community. Currently, almost all event simulations are done with the Geant4
framework [26], which can take minutes for complex events like those expected at the HL-LHC. Pre-
vious work in that area has resulted in approaches like the ATLAS FastCaloSim [27] and the CMS
FastSim [28], in which the authors report large speed-ups on the calorimeter simulation. Both ap-
proaches promote the speed-up by optimizing algorithms for simulating the various components of
the calorimeter, but at the expense of sacrificing some of the accuracy of the simulation. NCC has
also participated in the Geant V project, where improvement on the overall level of parallelization of
the simulation code [29] comes from the use of modern hardware, such as accelerators and GPUs.

An alternative approach is to employ machine learning techniques to improve the performance of
simulations. We will investigate the usage of generative models, such as (deep) generative adversarial
networks (GAN) [30], for simulation of physics events. These models work by simultaneously train-
ing two neural networks, with one network being responsible for building synthetic images and the
other being responsible for classifying these images as fake or real. This approach has already shown
some results [31], where the authors use deep generative networks for simulating the ATLAS liquid
argon calorimeter; some results are shown in Fig. 3. We intend to investigate the adherence of these
models to the calorimeter simulation including the state of art GANs such as the Wasserstein GANs
(WGAN) [32] or the Deep Convolutional GANs (DCGAN) [33].

Figure 3: An application ofML techniques to aHEP problem: simulating an 𝑒+ incident in a three-layer
liquid argon calorimeter with the Geant4 framework (top) and with a special purpose GAN (bottom).
Figure extracted from Ref. [31].
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2.2 Classification and Regression Models for Physics Analysis

The task of reconstructing and classifying the outgoing particles after the collision is challeng-
ing. This is due both to the high energy and to the high particle multiplicity from the pileup. HEP
experiments typically deploy selection algorithms that consist in a sequence of parameterized binary
hypothesis tests. This approach is easily generalized to BDTs, the most common form of multivariate
analysis techniques used in high energy physics such as b-tagging [13] and electron energy recon-
struction [15].

One area that has synergy with previous works done at NCC is the identification of high-energy
particle jets coming from the decay of heavy objects (W, Z, H bosons) into quarks. At high energies,
those decays lead to collimated jets that appear overlaid in detector, making it hard to distinguish from
single jets originated from pure quantum chromodynamics processes. Recently, a new approach [34]
was proposed to address this problem that transforms the data retrieved from the detector into images,
making it easier to deploy computer vision and machine learning techniques – an example is shown
in Fig. 4. We intend to investigate the usage of modern machine learning techniques for performing
the jet classification task. We will evaluate techniques that go beyond image classification, such as
the Extreme Gradient Boost (XGBoost).

Figure 4: An application of ML techniques (computer vision) to a HEP problem: the usage of Fisher’s
linear discriminant (FLD)to discriminate between regular hadronic jets (light-jets) from a pp collision
to those initiated by the hadronic decay of a highly boosted W boson (W-jets). Left: FLD presented
as an image. Right: distributions of the discriminant output when applied to W-jets and Light-jets.
Figure extracted from Ref. [34].
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3 Schedule
The schedule for this project is divided into the first-year schedule and the one for the extension.

3.1 First-year schedule

First Year (in quarters)
Q1 Q2 Q3 Q4

Activity 1 Survey and get familiar with 
simulation tools

Activity 2 Define statistical tools for assessing 
model quality

Activity 3
Survey Generative Model techniques to 
define model/technique that can better generate 
calorimeter data

Activity 4
Refine model by tweaking the hyperparameters 
in order to enhance the quality of the generated
calorimeter simulation data 

Activity 5 Evaluate the model and try it, by comparing with 
regular simulation data as well as real data

Activity 6
Report results to HEP community by writing a 
research paper to be published in a HEP 
conference/journal

Activity 7 Survey Jet classification techniques and define 
baseline for model quality assessment

Activity 8 Investigate the transformation of the Jet data 
into images process

Activity 9
Survey Convolutional Neural Networks 
architectures to define the architecture that 
better classify jet data

Activity 10 Refine model to achieve better classification 
levels

Activity 11
Evaluate the model in Real and simulated 
events and compare the achieved results to 
state of art techniques

Activity 12
Resport results to HEP community in a research 
paper to be published at a HEP 
conferece/journal.

3.2 Extended schedule

2nd, 3rd and 4th years (in semesters)

S1 S2 S3 S4 S5 S6

Purchase Purchase of new hardware -- GPUs and FPGA

Activity 1 Performance optimization of Machine Learning 
solutions for GPU architectures

Activity 2
Use Generative Model approach to generalize 
calorimeter simulation - generate simulated data
for a "generic calorimeter"

Activity 3 Use of FPGAs for implementing Neural 
Networks

Activity 4 Use of Neural Nets (and time series analysis 
based techniques)  for Track Reconstruction

Activity 5 Use of Reinforcement Learning for job 
scheduling optimization in the HL-LHC era
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4 Budget
The budget for this project will be entirely spent in computing hardware and research personpower.

We will hire at two levels: Early Stage Researchers (ESR) are in the first four years of their research
and have not been awarded a Ph.D, while Experienced Researchers (ER) are in possession of a doctoral
degree and have at least four years of full-time equivalent research experience. For the budgeting of
computing hardware, we have used retail prices available as of this writing, considering the exchange
rate of 1 USD = 4 BRL.

4.1 First-year budget

For the first year, as mentioned above we plan on using the computing resources already present
at NCC-Unesp for our preliminary studies. Those include:

• the GridUnesp computing cluster, with 288 TB of storage and 3104 computing cores that are
able to reach 77 TFlops;

• specialty hardware, like Intel® Xeon Phi™ manycore processors and NVIDIA GeFORCE RTX
and TITAN V GPUs.

Therefore, the entirety of the first-year budget will be allocated in personpower. We will hire two team
members, at the ESR level, for a period of twelve months. Table 1 summarizes the first-year budget.

Table 1: First-year budget.

Item Monthly Cost (BRL) Annual Cost (BRL)
ESR 1 4000 48000
ESR 2 4000 48000
Total 96000

4.2 Extended budget

For the extended period (second, third and fourth years), the two aforementioned researchers will
be retained. However, at that point in the project lifetime there should be significantly better ML
hardware available in the market1. Although there are turnkey GPU solutions in the market, they
tend to be outside the budget possibilities of this project. We propose instead to buy discrete GPUs
and install them in a regular rackmount server; we also propose buying FPGA cards for studying
high-performance inference with neural networks. For the third and fourth year, having gone through
the hardware upgrade, we go back to an “entirely personpower” budget allocation; three additional
researchers will be hired, two at the ESR and one at the ER level. Additionally, 3.3% of the budget
is allocated to academic overhead that may be used to cover conference expenses, hardware supplies,
among others. Table 2 summarizes the extended budget.

1For reference, in 2018 NVIDIA launched their new Tesla V100 GPUs; when compared to their previous offering, the
Tesla P100, the new hardware was 4 times more efficient for deep learning workflows.
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Table 2: Extended budget for years 2–4.

Item Monthly Cost (BRL) Annual Cost (BRL)
4U server — 40000
2020 NVIDIA GPU (4) — 4×30000
FPGA (devel. kit) — 10000
FPGA (deploy. version) — 30000
ESR 1 4000 48000
ESR 2 4000 48000
Year 2 total 296000
ESR 1 4000 48000
ESR 2 4000 48000
ESR 3 4000 48000
ESR 4 4000 48000
ER 8000 96000
Overhead — 10000
Year 3 total 298000
ESR 1 4000 48000
ESR 2 4000 48000
ESR 3 4000 48000
ESR 4 4000 48000
ER 8000 96000
Overhead — 10000
Year 4 total 298000
Extended budget total 892000
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