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In the reaction a+b® 1+...+n, the final state is constrained
by the initial through four-momentum conservation i.e.

m m Q " m e n " A Q n
=g P U ERtR=g E . Rth=gd P

This is valid for "asymptotic” states, in intermediate states the
energy or momentum conversation can be violated for a very
brief moment according to Heisenbergs uncertainty relation.

Define the 3n dimensional space of the unconstrained
final state momentum vectors p , the momentum space.
The conditions above define in this space a 3n- 4
dimensional surface, which will be called phase space.

To exhibit dynamical features of data or to formulate models,
one needs variables, such as invariant masses or momentum
transfers, in terms of which the description of the phase space
often turns out to be complex. The simplification of this phase
space description is one of the main aims of this course.

Need to distinguish 2 types of reactions or measurements:

n

} unknown
exclusive inclusive

The reaction channel is fixed in an exclusive reaction, whereas
an inclusive is a sum over several different exclusive channels.
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Two types of exclusive processes encountered in practice

a particle decay, O® 1+..+m
a collision of particles, a+b® 1+...+n

One can callthe 1sta 1l ® m & the lattera 2 ® n process
NB! When calculating essential variables for these processes,
spin will be neglected throughout the course to simply things.

In e.g. al ® m process, there are 3m- 4 free variables after the
4- momentum constraint. However, absence of spin implies that
in the rest frame of the decaying particle, the orientation of the
momentum configuration is irrelevant & hence 3 variables are
trivial (all the "angles”). There remain 3m- 7 essential variables.

Ifm=n+1, p,=py P, = - P,y It CaN be seen that particle decay
and collision are related by crossing, i.e. particle collision can
be obtained from decay by moving one of the final state particles
to the initial state and vice-versa. The connection is deeper than
that and e.g. invariant variables have the same physical regions.

number of example | number of example
variables1® m |1® 3 variables2® n|2® 2

all variables 3n-3 st f

essential

variables 3n-4 St

final state S,'Sy G

variables 3m-4 3n-4 tf

essential final

state variables 3m-7 Si'S 3n-5 t
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The concept of cross sections

Cross sections s or differential cross sections ds/dWare
used to express the probability of interactions between
elementary particles.

Example 2 colliding particle beams

o o

N, f=collison frequency N,

What is the interaction rate R, ?

beam spot area A

Rint M fN N, /A s .L S has dlm_ensmn_ area !
v Practical unit:
Luminosity L [cm-2 s 1] 1 barn (b) = 10-24 cm?
: |\Iint = I:aintt
Example: Scattering from target
scattered _
beam solid angle
element dW
incident
beam
N, = areadensty Nz () 1 NNy - oW
of scattering - dSIW(@) - Ny 1y QW
centersin target
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Define luminosity precisely:

Imagine a particle colliding with a bunch of cross section
area — A. Probability of collision is: (E-Wilson)

S >N part/bunch/ A

. . 2
for N, ypunen PArticles in both beams S XN puncn / A

and finally take into account the bunch crossing frequency
f, = # of bunches multiplied by the revolution frequency.

f, N2

Event rate= L x5, where L =2 P/ (= |yminosity)

(E.Wilson)
Ultimate challenge to
high energy colliders:
the production rate of
"Interesting” interactions
fall as 1/s (n 1/E,?).
hence need to improve
luminosity a factor 100
for each factor 10
energy increase to
benefit from energy

Increase (distances
at which structures are
probed p 1/C).
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Formally for particle reactions, the transition probability
from an initial state to a final state is defined by

(Pry s Pu|M|Bs B) © M(B)  the "matrix element”.

The matrix M will contain all the "physics” of the reaction
and will not be a subject of this course. We simply note

that it is an unknown function of thep’s. To obtain meas-
urable quantities, the square |l\/l(|q)| of the matrix element
has to be integrated over a set of allowed values of p’s.

The cross section is obtained by integrating over the
entire 3n- 4 dimensional phase space for all possible
values of p. Corresponding quantity for decay is the
partial decay width.

Cross section: s,°s,(sm)=1,(s)/F, where
F =4(2,0)3”'4\/( pa xp,)” - MM is the flux factor &

9= P "L (p, + p,- SRIMPI contains the

i=1 2E,
integration over phase space. NB! definition is a convention.
: : 1 1 5
Partial decay width: = l,(m*), where
y G"n 2m (Zp)Sm—4 ( )2

)= P " SR (- 5 p|(R . PuM|P)|

The lifetime ¢ of an unstable particle is the inverse of G,
the sum of the partial decay widths of all possible decays,
o

_Qot_aj ., Smilarly smt:a_sj

J

Rel ativistic kinematics 2005 . 1/26
Introduction and Phase space Kenneth Osterberg




HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET . .
univirsity of Riidggential cross section & variable change

If the integration is restricted to a subset of the available
phase space, a differential cross section is obtained. In
practice this is most simply done by Inserting d functions.

ds, 1 xy—~" d°p .

v “2E —d*(p, + p, - .S p)d(x- x(B)M(P)|
x=X(P) assumed. This trivially satisfies ax(ds, /dx)=s,.
Higher-order differential cross sections d’_/dxdy etc...,
are obtained similarly by inserting just more d functions.

Often one is not so interested in or not experimentally
able to measure absolute numbers but only the shape of
the differential distribution. Then one can define w(x):

w(x) = Sicé—i that is normalized to unity G'X w(x) =1,
Often one is faced by the situation that a prediction of a
differential distribution is given in one frame and the
measurement is done in another. Hence one needs to
change the variables in the distribution function. That can
be done very generally using Jacobian determinants,

e.g. in the case of a three-variable function w(x¢ y¢ z9:

1 ds 1 ds 1xy2 _ 1x%y.2
W _
(X.y.2)= s dxdydz s dxdydzf(x,y,Z) f(X,V, Z)W(X’y’Z)

™I Ty/IX 7/ X
here the Jacobian is : %:ﬂx/ﬂy' WY 177
xX,V,Z
18 ez W2 172
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You are all familiar to the interchange between cartesian
and polar coordinates and know that in momentum space

the differential dp,dp,dp, = p®sing dpd gdf = p*dpd cosgd?.
Derive the above expression as an example of Jacobians.

p, = psingcosf, p,=psingsnf, p,=pcosg P

ﬂ—pl:sinqcosf, ﬂ—pl:pcosqcosf, ﬂ—pl:-psinqsinf, &:sinqsinf
ip g 7 i

%:pcosqsinf, %:psinqcosf, %:cosq, %:-psinq, 11%:0
: _ (P Py, P3)
From previous page: dp,dp,dp; = dpd gdf
P pag P.1dP,0P, 1(p.q.f) pd g
T TP, Tps
o 9o Tp

TCPw Py Ps) _(TIr T, TR _ TRy Y0, SIPs TR TP TP

(p.q.7) 9 Y9 9Yg9| o Mg 9f Tp Vg 9If
M T, Tps

m“ 9 9f

ps I Jp,  T0 TP, fos TP, SIPs Ip - T By TP, _
T 9 9 9 %9 T 99 99 T 97 99 Tp

p*(0+sin’gsi’ f +cosgcost sing +singsin'f cosq +sin°gcosT - 0) =

p*(sin’g +cosgsing) = p°sing(sinf g + cosq) = p°sing

So dp,dp,dp, = p°sing dpdgdf as we have been thought.
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Something else useful to know about Jacobians, the
106, %) _ 106--%) oY) —
1Zz) Yo ¥n) M(zs-02))

M00--%) T %) 4
MY ¥n) 0G0 %,)

"chain rule”:

a special case of use is:

Let’s return to the integral 1.(s), which includes factors
d®p /2E . They are Lorentz invariant as can be seen by
differentiating the 4- momentum transformation formulas.
dp,(,) =dp%,) dp,=g(dp¢+VvdE9 =gdpH1+VvpIEY = dpJE/EC
since dEQdp¢=p¢/E' and E=g(E¥vpd) . The volume
element d°p=dp,dp,dp, thus satisfies d°p/E =d°p¢/ E¢

so the combination d®p/E is invariant.

Rewritten into integral form for a timelike p:

d*p/2E = (j*pd(p* - m*)Q(p")

where Q(p°) is a step function that is zero for p°< 0 and 1
for p°> 0. The d function integration has following property

d(f () =d(x- x%)/| T&x)|. wheref(x)=0 so
0y 'Pa(p® - )Q(p") = (y pdp’d((p")* - E)Q(P) =% QyP"a(p° - E)AP")

Now the factor 2 that is conventially added gets an
explaination. Note that the Q function is usually omitted.
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So now the integral over the phase space is:

19 =P _d*Rd(p* - M)QAR)d (P, + by - S PIMB)

In applications, the momentum integral above usually has
to be transformed into another set of variables if e.g. M is
expressed in terms of some dynamically motivated
variables or just involve variables that are not momentum
ones. The d function is a singular function and has to be
eliminated in e.g. numerical calculations. After eliminating
the d-functions, one has 3n- 4 variables only constrained
by the limits of integration, defined as variables F

| (s) = (‘jF r.(F)M(F)[ where r (F)is the phase space

density containing all factors arising from transformations
between the momentum variables and the F variables.

When M is set to 1, we define the phase space integral
2\ n d3p| 4 n
Rn(S)—d:) i:12—Eid (P2t Pp- SP)

This integral has no physical meaning but is technically
useful since e.g. r (F) and the physical region of F are
independent of the matrix element. Thus most kinematics
can be done without knowing the matrix element. The
next chapters will largely deal with transformations of R.
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