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Since a decay process p® p; + p, (E.Byckling & K.Kajantie)
+ p; is related by crossingto 2 ® 2

scattering, the number of invariant

variables must be the same,

namely two. Let’s consider first

invariant & then non-invariant

variables for the process 1 ® 3.

As invariant variables, it is convient to choose s, t & u as
In 2 ® 2 scattering. To avoid mixup let's change notation

1, ° s =(p+P,)° =(P- Pa)°
new invariants: { S °© S, = (P, + P)’ =(p- py)°
%3310 S =(Ps+P) =(P- P)°

their common relation: s +S, +S, =S+ M +ms +m;

Non-invariant variables are three-momenta & angles. To
define them one has to specify a Lorentz frame. The most
common one correspond to 2 ® 2 scattering CMF & TF.

The rest frame of the decaying (E-Byckling & K Kajantie)

particle or overall CMF is defined as
the frame in which P=p,+ P, + P; =0,
This is the analogue of TFin2 ® 2
scattering in the sense that one of the
external momenta is taken to be at
rest. Quantities in this frame are
denoted by an asterisk.
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Expressions for energies and momenta can immediately
be derived using s (i = 1...3) definitions in frame p = (Cs, 0).

E,?=s+m12-sz E*=S+m22-s3 E*=S+m§-sl
1 2\/g 2 2\/§ 3 2\/§
ool sms) L lsms) Ly (smis)

1 2\/; 2 2\/; 3 2\/;

Note the logic: E;* is obtained by considering the two-
particle decay p® p, + (p, + p;) with final state masses
m, & Gs,. The angles between the momentum vectors
follow from expansions of the s (i = 1...3) definitions, e.g.

s, =(p + P,)* =mi +m; +2EE, - 2R'P, cosq;, b

oS q1*2 _ P, XP, _ (s+ r"‘12 - S,)(s+ mg - S3) + 25(m12 + mg - S;)
PP |50 \// (s,mf,sz)\// (s,m2,s,)

sin g,,* is related to corresponding symmetric Gram

— ., — |2
determinant D, in CMF: sin?q,, =% b
172 oo,
sn?q., = D3(- P, P, P2) _ - 4sG(s,,8, M3, m;,s,m;7)
1 * *
s(P, )2(P2)2 /(S’mlz,sg)/ (S,m3,83)

There are three possible rest frames of a produced 2-
particle system, corresponding to s, t and u channel
CMF-systems in 2 ® 2 scattering. They are following:

PL+P=pP- Ps=0 pP+p;=p- =0 p;+p,=p-p,=0
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(E.Byckling &

We denote quantities in these K Kajantie)

frames by superscripts R12, R23,
R31, respectively (R for rest). It is
also sufficient to consider one of
these, say R23, since equations
refering to other frames can be
obtained by cyclic permutations.

R23 energies & momenta in terms of invariants found by
expanding s, = (p,+ p;)? in R23 U frame p,+ p; = (Gs,, 0).

Eqy = (si S, - mf)/z,/s2 Ejs = (32 +m; - im:,?)/z,/s2
R23 _ R23 _ R23 _ R23 _
P = pis = 2 iy

Only one angle in R23 is essential for the decay, namely
q,,"%, that can be obtained by e.g. expanding s,

= (py+ D)7 = 7 + 3 + 2E]PEF? - 2RTPR P cosgf? b

cos gR?% = Py %P, _(s- 5-mi)(s, +m] - mg) +2s,(m7 +m; - )
G, = =
ELCTN \// (s,sz,mf)\// (s,,m2, m?)
—_, — |2
sin g, is i to Dyin R23: sn?g3” = [P B[ plpzppzzl b
L2 P.=- P
2 2 2
sin? g R Ds(- P1, P P2)  _ -45,G(s;,8,M5, M, S,m;)

2 s (RRARR? I (s,5,,m]) (s, m3,m3)

For many purposes the kinematics is simpler in the R12,
R23 & R31 frames than in overall CMF, since for decay 1
® 3, these frames are similar to CMF in 2 ® 2 scattering.
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The Dalitz plot is defined as the physical region of p® p,
+ p, + p;in the s;s, plane. More generally, can be defined
as the physical region in terms of any variables related to
S, & s, by a linear transformation with constant Jacobian
e.g. any pair s, s or any pair ¥, E*, where i & ] = 1...3.

The Dalitz plot is given by all points in the s;s, plane that
satisfies the following equation: G(s,,s;,m?,m?,s,m?) £0

(E.Byckling & K.Kajantie)

The G here is the same as in the expressions for sing,,??3
and sin g,,*. The equality gives the boundary in the Dalitz
plot. This can be obtained e.g. by solving s, in terms of s,.

‘i(sz-i-nf_ S)(s, + 1My - M) - i\// (sz,s,mf)\// (sz,rrﬁ,rré)g

2s,
The equation giving s, in terms of s, is obtained from the
above by the exchange p, « p,; p, p, unchanged. Both
give, of course, the same curve. By requiring the Oto be
real, one gets the physical region in s,. Cyclic symmetry
iImplies that also following conditions have to be satisfied:

§ =t +ng-

(M +m)2E£s =(p,+p,)° £ (Ws- my)?
(M, +m)2 £, =(p, + p5)> £ (Vs - m)?
(M +m)?£5,=(p; + p)2 £ (s - m)>2
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To determine the phase space density & obtain as well
the condition for the boundary of the Dalitz plot directly,

let's consider the phase space integral.

RO= P SR E P Bi- B BIIWS- E- By E)

Integrate first over p, intherest framep=0 P

\d3ﬁl*-d3r); * * *

R(9 = (oo d(Ws- E - E;- E;), where
CGeee

E;2=| P, + P, [ +m = B + P* + 2R P} cosg, +

Write further  d°p,d*p, = P,E,dE,dW, P,E.dE .d cosg,,df,

The d function containing energies can be used to inte-
grate over cosg,,* (dE,* / dcosqg,;* = P, *P;*/E,*) giving:

*****

RS(S) = r—— — *
0 8E E,Es(R R /E,) Here the Q- function

~dE, dE;dW,df Q(1- coslql,) Testricts cosgys* to
8 physical values only.

The variables E;* & E;* are linearly connected to s, & s,
with the Jacobian T(E*, E;*) / 1(s,, s;) =1/ 4s, thus

R(S) = 5o (YsdsaWdrs Q- G(s, s, ME.nf s M)}

NB! the cosg,;*- condition is exchanged to a G- function
condition, obtained by algebra from the E,*- condition in
the & function. Analogous forms of Ry(s) with the pairs

S, S; & S5, S, obtained by cyclic permutations of indices.
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The solid angle W,* describes the p,- orientation in CMF
& f;*, the rotation of the entire momentum configuration
about some axis. Integrating over W,* & f.,*, we obtain:

d2R3 _ p2

(= constant)
dsds, 4s

The phasespacedistribution:

In other words, if data of a three-particle decay is shown
as points in a Dalitz plot, the density of points p (matrix
element)?. Any structure is thus easily evident. This is
why the Dalitz plot is so famous & used often. Note that
this result is strictly only valid for three-particle decays.

dR, ,02 3 _ ,02 2 2 2
-— - / 1 / ’ y p
B " 5 08 g V! Sos ! (st m)

Further

For the total volume of the three-particle phase space:

2 \(x/g-ml)

d
R(9=E-0) I (s sy (s mEm)
S m, +m;)* S

The O factor is 4thorder in s, & lead to elliptic functions.
Explicit solutions exists only for some special cases.

Especially interesting are the extremes, s® threshold =
(m+m,+m,)? (decay products non-relativistic, NR) or s® ¥
(ultra-relativistic, UR). Latter is obtained by setting all m = 0.

’s p>ymmm,

RYR(s) =’% RYR(s) = ~(Js- m-m,- m)?

2(m +m, +my)*
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Let’s next consider the boundary for some special cases:

- two or three masses vanishes. There are three distinct
casessm,=m,=0,m=m;=0and m =m,=m; = 0.

G(s,,8,00m,50) =s{s(s+s,- 5)- m(s-9)}£0
G(s,,5,0,0,5,m) =(sS,- sm)(s,+5S,- S- M) £0
G(s,,5,0,0,50)=ss,(s +s,- )=-58S,£0

The case m, = m, = 0 follows by symmetry from m, = m,
= 0. All these boundaries factorize. The plots below are
» true in the case the masses are small compared to Gs.
In particular, when s® ¥, the Dalitz plot is a triangle.
(E.Byckling & K.Kajantie)

- all masses equal. This was the case discussed by

R. Dalitz himself in 1953, when he proposed his recipe.
He did it in terms of the three CMF kinetic energies &
used triangular coordinates. His orginal notation & recipe
are not relevant for modern particle physics experiments
(see e.g. R. Hagedorn: Relativistic kinematics (W.A. Benjamin 1964)).
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The final state momentum vectors are collinear on the
Dalitz plot boundary, as expected. Let’s consider overall
CMF and see where s;, s, & s; attain their maxima and
minima. For s, s, = (m, + m,)? obtained when p,xp, = mm.,.

P cosq,=1 U R/m=R/m,(P b, =b,)
s, as small as possible implies maximal possible E;*:

* * + 2 = + 2 .
E3 — E3,max — S m3 (rnl m2) (pOlnt nAln)
24/s

The maximal value of s, s, = (Gs — m,)2 corresponds
to P;* =0 (E;* =my) or p; =- p, (point”B;"). The minima
& maxima for s, & s; are obtained by cyclic permulations.

S (E.Byckling & K.Kajantie)
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The initial state of 2 ® 3 scattering, p,+ p,® p,+ p, + ps,
contains in CMF a preferred direction, the incoming beam
one P, = - Py,. The total number of final state variables is
5, of which the rotation around the beam axis is trivial for
spinless particles & hence the number of essential final
state variables is 4. It is no longer possible to present
data & predictions in fully differential form (would require
an intensity plot in 4 dimensions). At best one can plot in 2
dimensions and integrate or fix the remaining variables.

There are several ways to proceed from the original form
of three-particle phase space integral Ry(s). Here we will
integrate of the d- functions & then replace stage by stage
the remaining 4 non-invariant variables by invariant ones.
For defining any angular variable in 2 ® 3 scattering, one
has to specify a frame & orientations of coordinate axes.
On the contrary, the invariant variables can be defined as:

s, o S, = ( p, + p2)2 — (pa +p, - p3)2 (E.Byckling & K.Kajantie)
$% S = (P + Pa) = (Pt Py~ P’

t ©ty =(Pa- p1)2 =(p,+ Ps- pb)2

t° s =(Pp - Pa)* = (Py+ P2~ Pa)’

SO Sy =(Pat Po) = (Pt Ppt+ Ps)°

In the phase space of 2 ® 3 scattering, sis fixed & the
other invariants vary. However, when this condition is
relaxed, the invariants defined above are related by

crossing under the following cyclic transformation: s®
tLt®s ®sS,®t,® s(i.e.p,® -p;® -p,® -p;® p,® p,).
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In addition to the invariants above, one can define 5 other
invariants by joining particles that are not adjacent in the
diagram. These are t,, t,,, t5, t,; & S;53. They are linearly
dependent on the defined set. The relation between e.g.
t., & the defined set is most easily obtained by drawing
the diagram below & applying the relation corresponding
tos+t+u=Sm?inthe lower 2 ® 2 scattering vertex.
(E.Byckling & K.Kajantie)

Further can the 10 scalar products p, xp, be expressed in
terms of the defined set of invariants using same recipe.

Eg 2P, Xp,=Po+Ps-ty, =S, +t,-t,- m;

A detailed treatment of the 2 ® 3 scattering will be based
on the factorization of the phase space integral into two
processes 2® 2 and 1 ® 2. We'll choose the 2- particle
intermediate system to be p, + p;. Apart from a rotation
around the beam axis,

both the production of

the system 2+3 & its

decay are described

by two variables.

(E.Byckling & K.Kajantie)
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Here the first two are taken to be invariants & the latter
two decay angles in the rest frame of 2 + 3. We start from

_\dpldpzdpg 4
Rs(s) E 2E, ZE, a*(p
Ui \d°p, d°p; a4

_ ) adp AP
d OZEZEQBd(pa"'pb Py - ng)gTZEa (Ps- P2- p3)%

where we have used OIS2 Ozﬁd“( Pos- P,- Ps) =1WIthEZ = P2, +S,

PatPo- Pi- Py- P3)

Now the two integrals (both of type R,) inside the brackets
are familiar from 2 ® 2 scattering and 1 ® 2 decay:

pW@@@)

and

Now \dgﬁzﬁd“(p - p,- A
OZ E, 2, 2 GV\?
P dcosqdf p adt p adt
O o FPtR- P P)= 2 s -
E, 2E, CO.E s 21 (smE.p)
p2yI (s,,mZ,m?)
452\// (s,mZ,m?)
The physical region of the process m,+ m, ® m, + s, is
m2+m3£\/§£\/g-rn1 U |cosqf|£1, p

I (s,s,,m))30U/(s,,mm3)30 U G(st,s,,m:m>m’)£0
Sz, My Sz, My, My 1S, My, My, My
(E.Byckling & K.Kajantie)

so finally Ry(s) = c\)itldsz
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The physical region for the 2 ® 3 process given in the
t,;S, plane (defined by the condition G £ 0) is called the
Chew- Low plot. To obtain its boundary, one can solve
the equation either for t, in terms of s, or vice versa.

. 1 S N
§=ment - Sol(sm- mE)(s- s, + ) - 2yl (SmEm) Y (5.5 g

s§:s+mf- 12
2m,

(s mE - mE)(mg -+ - 1) - 2/ (s M) () g

These curves are 2" order in t, and s,: the boundary is a
branch of a hyperbola with a lower & upper bound on s,
of (m,+ m;)2 & (Gs- m,)2. An example is shown below

(E.Byckling & The invariants s, & t,
K.Kajantie) . .
are given in CMF by

s, =s+m’ - 2y/sE;,
=g 2EE +
2P, P cosgq,

The expression for t, shows that for a fixed s,, t, depends
linearly on cosg,,* (i.e. one moves horizontally in the Chew-
Low plot by changing cosq,,*). Substituting t;, = (m,- m,)?

in the formula for s,*, one obtains that s,* = s,-, which
shows that the line t; = (m - my)?is tangent to the hyper-
bola G = 0. This is the maximum value that t, can attain &
corresponds to equal velocity situation for particles a& 1.
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R, with all the conditions looks like

1 ,
LR Ty Qifoitdszq{ G(sty 5 mE,me,m?)}

\// (Sz1m2’m3 c)jWst

The phase space density in the Chew- Low plot is then

Q{/ (s,S,,m; )} Q{/ (Sz1m21m3)}

d’R; _ Pz\// (s2, Mz, m3) the differential is constant
ds, ity 4s,,// (s,m2,m?) with t;, but varies with s,.

One can further integrate over either s, or t;. Since the

integrand is independent of t;, the integration over t, only
gives a factor t;*- t,". The result is, of course, identical to
the one obtained from the Dalitz plot. Integrating over s,:

dRS_ p? \//(szmzms)

ds,
4\//(smamo)Q"

where  s" =max{s;,(m, + mg) }
If we abbreviate W,R23= W= (cosg, f), its distribution is:

. / (s, m2.ne ,
eV (Y = |M(s, L WF,

where M(s,, t;, W) is the matrix element for p, + p,®
p, + P, + ps. If any variation is seen experimentally in
w(cosg, f), it has to be due to a dependence of M in W.
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