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Let’s consider the simplest possible process: one particle
going into two, thus study two-particle final state without

specifying initial state p=(E p) except that four-momentum
Is conserved. Then the two-particle phase space integral

IS. N
Rz(p,nf,rrﬁ)=ol4pld4pzd(pf- nm)d(p; - m)d*(p- pi- p,)

Note that R, can only be a function of s(= p?), m and m,.
First integrate over p, in the four-dimensional d function
imposing p, = p - p, and then go to the frame p=(xE,O)

(9= (Y'ne(p} - M) (p- P~ i) = (Pt~ 245+ - i

i O\Hdvgl—dEl d{s- 2sE; +n - mj} =

R \W:pRL*
PRELC A

The special d function property is used here. In addition,
that C13[:)1/2E1 = d3pl*/2EI (invariant) & E*=P?+n’ b EJE=PdP
Is used. Note further that the last d integration defines

s- 2/sE, +mf-mi=0 b E =(s+m- mf)/2y/s

From this one obtains: P =/ (s,mf,m§)/2f = P} (since CMF)
So finally: R,(s)=p P /s :p\// (s,mf,m%)/Zs

One would like to be more general and derive R, in an
arbitrary frame p=(E, p) (the explicit derivation is left for
the exercises). When integrating over P, one finds that
P, Is now given by a second order equation with two
solutions denoted P,* & P;".
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The resulting expression is:

_adw (PF)?
R(E.P) = O S (EP - PE; cosq,)

where W, is the solid angle describing the P, orientiation
& q, is the angle between the momentum vectors of the
decayed particle and one of the decay products. Note
that this expression is valid only for timelike p (p%> 0).

Finally, let's derive the expression for lightlike p (p%= 0).
The corresponding standard frame is p=(w,0,0,w) . TO
simplify integrals we introduce new "lightcone” variables.
The parametrisation of four-vector p, is then given as:

l.,=Exp, b p={3(/,+/.).py.Py,5(.- 1)} Sothen

R,(p.m;,mg) = (ylpidpy,dpy,dp,,d(pf - m))d{(p- p))*- m} P
Ry(p,mE,m2) =~ 4 (Y/.d dnd(/, /. - 72 - mE)d{mf - mé - 2w},

where 1 =(py,.p,) IS the transverse momentum of p;.
Here we have applied a Jacobian for the transformation.

T(EL Pixs Pays P1) _|TE /T, TP, /T4 1

(/. l P py)  |TE/T . fp, /T | 2

Doing the integration over /, and /_ we obtain:

Ro(p.mf,m3) ={2(m; - m)} ' (yi*n
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The condition for the process p® p, + p, to be physical,
derived from expressions for the phase space integral, is

1 (0%, P2 p2) ={p?- (P2 +4p2)3{p%- (2 - p2)3 2 0

If all four-vectors are timelike, the condition requires:

Jp? 3 m +m, = threshold
that is a natural condition for a decay, or

\/E £|m, - m,| = pseudothreshold
that is approriate if p is a momentum transfer.

Define symmetric Gram determinants D,(p,,..., P,):
PP PXPy . PP,
D,(Py-- Py) © % % % p
PaXPL PPy Po

especially : Dy(py, ;) =- 5/ {(P + P,)", P/, P}
Then we state that the process p ® p, + p, is physical if

D,(p.,p,) £0

The boundary of the physical region in terms of
invariants is obtained from the condition D,(p,,p,) = O.
Now also the / function reveals its true significance, as
an expanded form of D,. One can call / the basic three
particle kinematic function. This follows from the fact
that D, is relevant for reactions, where the total number of
four-momenta is three (e.g. a1l ® 2 decay).
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We now proceed to treat the reaction p, + p, ® p, + p,.
The notation used has been choosen so that it can easily
be extended to higher multiplicities. The phase space
(fixed by e.g. s) IS 2-dimensional and can be parametrised
e.g. by the scattering angle g & one angular variable f,
describing rotations around beam axis. f is trivial, leaving
one essential final state variable. The total number of
essential variables are 2: one fixes the total energy, the
other the scattering angle. Use the angle between p, and
p, as frame-dependent angle-type variable in CMF & TF.

h°Gu=P- G G°du
By definition, scattering near g,* = O is called forward &
scattering near g;* = p backward. Note that the g, and g,

° g, relation is rather complicated. An invariant angle-
type variable could be the invariant momentum transfer:

te° tal = ( P, - p1)2 = mi - nhz - 2EaE1 + ZPaF)lCOSQal

In CMF, 2 ® 2 scattering is kinematically very simple,
since the energy- & angle- dependences are completely
decoupled. This is not the case in TF. If one assumes (s
to be fixed then any one of the four final state variables
P,, g,, P, or g, will determine the remaining three.

B B _ p,=0 5
9} e q, Pa 2 Cll___
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Let’s now return to Lorentz transformations shortly to
find out how P* and g* transforms when going from TF
to CMF. Let’s investigate the sphere of constant (P*)2.
The Lorentz transformation: p,=p, p,=p, p,=p,/g- bE P

* 2 + 2 - . 2 * *
(P")? =congt. b Px Zpy + P gzbE ) =1, where a=P ,b=gP
a
This describes an ellipsoid with the distance | between
focus and the centre of the ellipsoid and eccentricity e

| =4/b?- a2 =gbP e=l/b=»b

Quantitatively the results are easy to understand: the
sphere’s transverse dimensions remain unchanged while
longitudinally it is dilated by g & translated by gb E*. We
obtain 3 different classes depending on the b- b* ratio.

Class 1: p < 8, origin lies inside ellipsoid

Class 2: 5 =, origin lies on elipsoid

Class 3: 8> B, origin lies outside ellipsoid
In class 3, the g and ¢* correspondance is ambigious
(2- to-1 asitis with P and P*) & there exists a maximum
angle, g, Class 2 & 3 particles can only go in forward
directions of TF while class 1 can also go backwards.

P(q)
b<b" b / 9

i \
ay |
\j P, b>b b — =
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Since all results for P, can be obtained from those for P,
by interchanging 1 and 2, it is enough to treat P, = P,(q,).
Instead of explicit derivation, let’s use result of previous
page. The transformation between CMF and TF was

b =P,/ (E, +m) =/ (snE,np) /(- nE +np)
™ =(E, +m)/Vs =(s- nE +nf)/2mys
The velocity of particle 1 and its g parameter in CMF is:
b, =F [E, =\l (snf.nd) /(s+nE - )
g =E /m =(s+nt- nmf)/2my/s
b _(s+nf- ) |/ (SMEn)
by (s- ML+NE) J/ (snf,ne)

Depending on whether g,* < 1 or g,* 2 1 particle p, can be
emitted in any direction (0 < g, < 180") or only in the forward
hemisphere (0 < ¢, < g £ 90°) in TF. The g,* = 1 threshold
depends on the relative magnitude of the masses. For

completeness, the solutions for momentum & energy of p;:

Rt ={(E, +m)?- P?cosq,} [P, cosgi{m,E, +L(nE +nf +nf - )}
+(E, +m)[{M,E, +(nf +nf - mP - )} - mfng - meR?sim g |

£ ={(E, +m) - Prcod gif (B, + m)0mE, +3 (e +ng +nf - )}
£ P, cosq[{mE, +L(nE +nE - nf - nE)}? - nfng - nEPZsir g T

The basic parameter: ¢, =
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Some measurements are based on coincidences. Then it
IS important to know g,, when the value of g, is given. The
relation can be derived in many ways. E.g. using the CMF
relation g,* = p - g,* & the Lorentz transformation of g:

~ sing, _ sing,
tanql - * * q2 - * *
g™ (cosg, +g,) g™ (cosq, +g,)
(E.Byckling
where ¢M & g,* are & K.Kajantie)

given on previous
page & g,* can be
obtained from the
expression for g,*
by interchange of 1
& 2. Now g, ,* can
be eliminated and a
relation between g,
& g, obtained. This
Is shown in the
figure to the right:

As an example let’s consider elastic scattering rnm
® mm (mtarget & mE mbeam particle mass, e.g. ep):
. _(s+nf-nr)
%" (s- nf +m?)
This implies that p, recoils to the forward TF hemisphere
(0 £ g, £ 90°) & that the beam particle can be emitted in
any direction unless m= m, in which case also g, £ 90".

£1  g,=1
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Let’s now introduce the whole set of invariant variables
for 2 ® 2 scattering, the "Mandelstam variables”, though
we have already used two of them, sand t. For reasons
related to crossing one usually defines a third variable u.

The definitions of the invariants for p, + p, ® p, + p,are:
s=(pa+p)° = (P +p,)°
=(E; +E)" = (E, +E,)" =m{ +ny +2m,E;

t=(p.- P)°=(Py- P)°
:mi +I'Tf- 2EaE1+2PaP1COSqa1:ln§+'n§_ ZrnoE;—

U=(p,- ) =(Py- P)°
- mi +m§ - 2EaE2 +2PaP2COSqa2 - m§ +ITH2 - ZrnoEir

There are only two independent
variables so s, t and u must be
related. Infact, the relation is

(E.Byckling
& K.Kajantie)

s+t+u=m>+m;+m’+m,;

Crossing: We have sofar threated the reaction p, + p,
® p, + p, assuming all energies are positive: p=(E,p)
with E=+/P?+nt 3 m3 0 . But the equation for four-
momentum conservation is also analytically valid for any
timelike p with a negative 0-component: p=(E,p) with

E=-yP>+nt £0. These negative energy states will in QM
be seen as the positive energy states of the anti-particle.
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4-momentum conservation & antiparticle definition give:

PatP =Pt P, s-channel: p,+p,=p + P,
Pat(-pP)=(Cp)*+p, P t-channel:p,+p;=p;+p,
pa+(' p2):p1+(' pb) u'ChanneI:pa+p§:pl+p5

where the "bar” denotes an antiparticle & all 4-momenta
now have positive E’'s. For the kinematics, it is irrelevant
whether a particle is an antiparticle or not but when
examing dynamical properties the particle- antiparticle
distinction has to be taken into account when a particle
Is moved from initial state to final state and vice versa.

(E.Byckling
& K.Kajantie)

In above equations, the channels are denoted by the
invariant variable giving positive values in the channel in
guestion. The 2 remaining possibilities are then invariant
momentum transfers. E.g. t is always defined t = (p, — p,)?
but in the t- channel p, has a negative E so that in frame

Ea-ﬁlzﬁa+r)—120 b t:(Ea_E1)2:(Ea+|E1|)23(rna+rq)2

In addition to scattering channels, there may also exist
decay channels. E.g. if m,® m,+m +m, the following
decay is possible p,® p,+p +p,
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The relations between s and CMF energies & momenta
are very simple since no angles are involved. Recollect:
PR =l(smtm) /s B =R =l (snf.m) /24
E, =(s+m - nf)/2/s E, =(s+mg- mp)/2ys
E, =(s+mE - m)/2Vs E, = (s+m2 - mp)/2y/s
The first 2 equations imply that s3 max{(m, +m)* (m +m,)?} .
Introducing these expressions into the t- equation, we get
. _t-mZ-m+2E.E,
COS @, = —
2P, P,
2s(t- m7 - m)+(s+m7- mg)(s+m- my)
\// (s,mi,mﬁ)\// (s,m?,m3)
s +s(2t- mg - my - my - m3) + (mg - mg)(m; - my)
\// (s,mﬁ,ms)\// (s,m7,mj3)
_s(t- u)+(mg - mp)(my - my)
\// (s,mj,mé)\// (s,mZ,m5)
Other angles can be obtained from g,* e.g9. ¢,* = p - g,*.

The relations here refer to s- channel frames. Often it is
more convient to be able to express quantities in t or u-
channel frames in terms of s, t and u. Realized simply by
permutating indices. To go from sto t- channel, swap 1
with b (s« t, usame), to go from sto u- channel, swap 2
with b (s« u, t same). E.g. t- channel CMF scattering

angle: c0sg' D = t(s- u) +(m: - m?)(mg - my)
ab
\// (s,mj,mf)\// (s.mg,m;)
Relativistic kinematics 2005 Kenneth Osterberg /8
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For the initial state quantities we have already derived:

B =(s- nE-np)/2m, BT =yl (smEng) fom,

In the final state, there are 2 energies (E;', E,’), momenta
(P,T, P,7) and angles (q,", ¢,") to determine. The energies
are now most simply related to momentum transfers:

Bl =(mE+mZ-t)/2m b B =/ (tng.m) fom,
B =(mg+nf-u)/om, b B =yl nEnf) f2m,

The equations above require the validity of the pseudo-
threshold: t£(m,- m)* u£(m,- m)* for the momenta P,T
and P," to be real. Finally, the angles g," and g," can be
obtained from expanding t = (p, - p,)? and u= (p,- p,)?:

cosgT = {87 Ma - mME)(my +my - u) + 2mg(t- mg - my)
al

2 2
cosgT, = (ST M- ME)(ME + mZ - 1) + 2mi(u - mg - m})

\// (s,mj,mtf)\// (t,mg,m3)
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The reaction cross section for p, + p,® p, + p, Is:

1 \d°p, d°p
- — plz—pzd“(pa+pb- p- pIM[
8p \//(s,mi,mo) E, 2E,

The matrix element M depends here on two independent
variables (e.g. an invariant and an angle). If a differential
cross section ds/dx is computed, no further integration
over M is necessary (since one nontrivial variable is still left).

s(s)=

Doing the integration over phase space partly, one gets:
ds _ [M['y/ (smé.m)
AW, 6ap2s,/ (s,m?,m)
ds___[M[

(in CMF, derivation in exercises)

_ y Gk
dW,  64p°mpP (B, +m,)R’ - RIE/ cosgy
Similar formulas for ds/d* & ds/dW4T obtained by inter-

changing 1 « 2. In many cases, it is more convient to
have an invariant cross section like ds/dt than the above:

ds _ ||\/||2

dt  16p/ (s,;mZ,nP)

The reaction cross section can now be determined
1 t*

s (s) = A dtiM (s, t

= L6p7 (o, mpy @ MY

where t* (s, m?) are the limits on t for fixed s (see later).

(inTF)

(inany frame, derivation in exercises)
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The optical theorem relates the total cross section for
the process p, + p, ® anything with the forward scatter-

ing amplitude of the corresponding elastic process (see
e.g. G. Kallen: Elementary particle physics, Addison- Wesley, 1964):

MM gagic (St = 0)} = /1 (5,2, M) S 1 (S)
2
ds __ M
plus = >
dt  16p/ (s,m:,ny)

(Re{ M gy (5,1 = O)})2 = / (s,m2,m2)f16p 2

t=0 S t%t (S))

1
3 stx (s)
t=0 P

Implies that the "optical point” is ds
related to the total cross section: dt

The TOTEM experiment at LHC utilizes the optical
theorem to determined the total pp cross section in a
luminosity independent way by combining the differential
distribution dN/dt determination of elastic scattering at
t = O (very forward scattering) with a counting experiment.
The dN/dt at t = O is determined from extrapolating the
measured distribution at small t (~2-3 x103GeV? to t = 0.
™

, _ 16p . dN|

Ls _ 16p ., (dN/db)|

tot ~ 1+r2 dt |t=0 >—|:> S tot

- 2
LS, =Nyogic* N 1477 Ny + N

inglastic
_/

r° R&{M g (ST = 0)} IM{ M g (S, = 0)}
»0.13-0.14 at LHCenergies(v's =14 TeV)
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When the reaction p, + p, ® p, + p, Is described by E*

& q,*, then the physical region for the s- channel can be
defined by E;* ® m;, =1 £ cosq,,* £ 1. In other words, the
reaction p, + p, ® p, + p, can experimentally have any
values satisfying these conditions. Let’'s express the
physical reaction region in the plane of two invariants
(e.g. s & t). For simplicity, we start from elastic scattering.

Let's analyse the reaction p, + p,® p, + p,when m,=m,
= mand m, = m, = m, assume mE£ m. CMF quantities are:

E.=E =(s+m- m)/2/s E =E, =(s+m?- nf)/2ys
P =R =B =P, ° P =/ (s.nf,m?) [2y/s

Definition of t gives a relation for the scattering angle g,,*:
t- m2- m’+2E_E, 14 2t

2P P/ I (s,nf,m?)’

[ (s,nf,m?%)

) 2S
Definition of u gives a relation for the scattering angle g,,*:
u- m2-ms+2E_E, g4 28u- 2(m? - nt)?

2P, P, I (s, nf,m?)
(m®- n7)®> [ (s,nf,m’)

S 2S

CoSq,, = or

= [1- cosgl,)=- 4(P")2sin?(q.,/2)

C0S g, =

now q,* = p- q,*, SO u= (1+ cosqgl)

This implies the following ccgndligozns for backward/forward
I I . * m- - *
direction:  or = )= ( - ) (g, =0)=0
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The requirement -1 £ cosg,,* £ 1 now gives the boundary
of the physical region. The latter condition gives a straight

line in the st-plane t=0, u=2m?+2n?- s (cosq,, =1)

& the former [ (s,m?, nf) _(m?- nf)? S
a hyperbola: =~ S U= S (CoSg, =- 1)

with the asymptotes s=0, u=0(ort=2m"+2nf - s). The
curves intersect at s= (m+m?2. s= (m+ m? corresponds to
the threshold (P* = 0) of the reaction. Although only the

s- channel was used in derivation, we obtain the physical
regions also for the u- (u3 (m+m?) & t- channel (t 3 4n?).

(E.Byckling
& K.Kajantie)
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We can now return to the case of arbitrary masses. By
considering a decay p® p; + p,, we proved earlier that
D,(pi,p;) = PP - (B*p,)*£0 U
(p+p)*3 (Mm+m)® or (p+p)°E£(m-m)?

Logically thenin p, + p, ® p; + p,, S= (py+P,)*= (P4t Py)?

has to be larger than both (m+m,)? & (m+m,)? or smaller

than both (m- m,)?& (m-m,)2 Same will be valid for other

invariants so physical s, t & u in scattering have to satisfy:
s3 max{(m, +m,)*,(m +m,)%} or

s£min{(m, - m,)*,(m; - my)%},t3 max{(m, +m)*,(m, +m,)?} or

t£min{(m, - m)*,(m, - m,)%},u? max{(m, +m,)*,(m, +m)?} or
u £ min{(m, - my)*,(m, - m)}

In decay channels (e.g. p, ® p; + p, + p,), the fact that p;

has negative energy has to be taken into account. So s=

(P +P,)? = (P, PY)? has to satisfy (m+m,)2£ s £ (M- m,)2.
(M +m)? £s=(p,- P)* =(p + ) £(M, - M)
(M +m)? Et=(p,+p)° =(P,- P)° £(m,- M)’
(M, +m)? Eu=(p,- P)*=(p,+ Po)* £ (M, - my)°

These inequalities are satisfied only if m 3 m+m,+m.,.
Similar conditions are obtained in other decay channels.

In addition to the above, |cosg,*| £ 1 has to be imposed,
which will be shown to lead to a condition of the type D,
3 0 and which obviously restricts sand t simultaneously.
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The easiest way to see the effect of the cosg,,* constraint
IS to insert cosg,,* = =1 in e.g. the definition of t:

= meemf - (s me - mE)(s+ - md) -y (s (s )}
where the * refers to the two cosq,,* values. Especially, t*
(often called |t|™n) is the value of t in the forward direction.
In general, the above equation gives the boundary of the
physical region for 2

® 2 scattering in the

st plane. To see the

symmetries between

the various channels (E.Byckling

and obtain the result & <f@ante)

in compact form, it is

most convient to fix

the boundary from

the condition sing,,*

=0U cosg,* =+1.

P2 PaXPy PaXPy
Da(Pas Py P ° [P XPa By Py xpy = S(P)*(R)*sin’qy
PP PP, P
From the determinant one obtains the basic four-particle

kinematic function G(x, y, z u, v, w), which corresponds
to D; in the same way as / (X, Y, ) corresponds to D,:

D5(Pa, Py B =- 2G{ (P, + Py)% (P - P (P + Py~ P P3P PrY
=- +G(s,t,m;,mg, mg, )
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2 2 2 2

Sothen sin®g,, =-4s G(S’tz’ mzz, T, Th ’Zml)z

[ (s,mg,mp)/ (s,mp,m;)
The physical region for 2 ® 2 scattering in the st plane
has to satisfy in addition to the previous mass conditions,
the requirement: D; 3 0 where the arguments may be any
three linearly independent combinations of p,, p,, p, and
p,. An equivalent requirement based on the G- function is:

G(s,t,m5,m>,m,m>) £0

(E.Byckling & K.Kajantie)

NB! valid even if some of the p’s are groups of particles.

The algebraic expression for G(X, y, z u, v, W) IS

G(X,Y,Z,U,V,W) = X’y + Xy° + Z°U+ Zu® + V°'W + VW* + X2wW
+XUV + yzv + yuw - Xy(z+u+v+w)
-2U(X+y+v+w)- vw(x+y+z+u)

If m,=m, = mand m, = m, = m(elastic scattering):
Ast{st +/ (s,m%, n7)}

Gixy 2z =Yy +/ (xzW} P Sn'gy=- =T

(equivalent with our previous result for cosq,,")

NB! The physical region of symmetric Gram determinants
depends on the order, e.g. D, £ 0 and D; 2 0. The rule is
that odd orders 2 0 and even £ 0. Implies e.g. that for 2
® 3 scattering, the physical region is described by D, £ 0.
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(E.Byckling & K.Kajantie)
Exactly as / (x, y, 2) is related to the area of a
triangle, one can see that G(x, y, z, u, v, w) =
(- 144)* (squared volume of a tetrahedron with

pairwise opposite sides y'x,/y; vz, Yu; Jv,Jw).

G is also called the tetrahedron function.

G is invariant under certain permutations of its six arguments
namely under any permutations of the four faces of the tetra-
hedron. If we group the arguments of G into three groups xy, zu
& wv corresponding to opposite sides of the tetrahedron. Then
G is invariant under (i) any permutation of these groups, (ii) any
simultaneous interchange of arguments inside the groups.

G often needed as a function of two variables, e.g. s&t.
Due to symmetry properties there are only two essentially
different cases, xy and xz (or permutations). G = 0 is 3™
order in X, y & 2" order in x, z. The 2"d order solutions are

Xt =z+w- 2—1y{(y+ Z- V)(y+w- U)- i\// (y,z,v)Jl (y,u,w)}

=u+v- 2—1y{(y- z+Vv)(y- wtu)- i\// (y,z,v)Jl (y,u,w)}
The solutions for y and z are obtained from x* by the per-
mutations X « 'y, z« uand X« 2z U« Y, respectively.
We always want x* 3 x & the sign determined when y > 0.
The equations above can be understood as analogues of
previous equations evaluated for cosg,,* =+1. The + signs
corresponds to cosine = £1, evaluated in the rest frame of
the variable dividing the brackets, e.g. CMF if y = s. The
/’s are related to momenta & the first terms to energies.
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E.g. forp, + p, ® p; + p, we get the following solutions:

U+ W- 2—1)({(X+U' V)(X+W- Z2)- i\// (x,u,v)\// (x,z,w)} p

=g e o (senf- s+t~ ) 11 (snt DT (s

(identical to our previous result)

Note that G now can be expressed in terms of its roots:
G(X,¥,Z,u,v,w) = y(x- X" )(x- X )=x(y- y' )y-y) ec.

Let’s rewrite G in such a way that the symmetry between
s, t and u- channels (& hence boundaries) is explicitly seen

- G(x,Y,z,u,v,Ww)° F(s,t) =stu- (as+ bt +gu), where

Ka = (mZmy - mim; )(mg +my - my - my)
Kp = (mim; - mpmg )(mg +my - my - my)
Ky =(mam; - mpny )(mg +m; - mp - )
K=mi+mi+m’+m =s+t+u

It is also convient to use tri- (E.Byckling & K-Kajantie)

angular coordinates. The axes

are then three lines intersecting

at 60°, and s, t, u are the

distances from corresponding

axis. When the height of the

triangle between the lines is

Sm?, the condition s+ t+u =

Sm2is automatically satisfied.
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The cubic curve F (s,t) = 0 has the following properties:
1. The asymptotesares=0,t=0,u=0.

2. The curve F (s,t) = 0 intersects the asymptotes in the
following three points on the line as+ bt + gu = 0O:

s=0: t=-gK/(b-g) u=bK/(b- g)
t=0: s=-gK/(a-g) u=aK/(a-g)
u=0: s=- bK/(a- b) t=aK/(a- b)

3. The tangents of F (s,t) = O parallell to the three

coordinate axes are the following twelve lines at
threshold and pseudothreshold in the 3 channels:

s=(mm)’, s=(mzm)’, t=(mzm)’
t=(mxm)’, u=(mm)’, u=(m*m)’

To make this a bit more practical let’s consider a reaction
pY%(135) + w(783) ® p*(140) + p~(140). Now m+m, > m+m,
so that the s- channel threshold is (m,+ m,)? » 0.843 GeV2.

In the reaction K » 0.671 GeV?, Ka » 6.4 x10°3 GeV® and Kb
= Kg» 6.9 x10° 3 GeV®. Since g& b > a, the curve F(s,t) =0
intersects with the asymptotes t=0 & u =0 at an s- value
that is positive (NB! no intersection with s= 0 since g = b).

In the s- channel, t and u may attain (m- m,)?and (m,- m,)?
respectively (both » 2 x10-5 GeV?). The t- channel is p° + p-
® w + p- so the threshold is (m+ m,)? » 0.852 GeV2. Both

S & U remain negative. Same threshold value and s &t
behaviour holds also for the u- channel p® + p* ® w + p*.
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Physical region in st,u

The remaining pseudothresholds and thresholds are
tangents to a connected central region, which lies in the
region where s, t & u are all positive. In case there are
thresholds that are smaller than the parallell pseudo-
thresholds (« one mass is larger than the sum of the three
other), this region represents a particle decay. If this is
not so, the region is unphysical (D; 3 0 but not D, £ 0).

(E.Byckling & K.Kajantie)
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We have seen that for rm® nmm, the value of t in the
forward direction (t*) is O but in the backward direction
u=(mé- n??s>0.Ingeneral, t*1 0 but approaches 0
when s® ¥. To obtain approximate value, let’s expand
the /- functions for large sin the expression for t*.

eg. y/(snE,nE) =y(s- nE- nf)- 4nEnf =(s- nE- nP)y1- 4,

»(s- Mt - nE)(1- 2€5,), where e, = rrrr]?am)nﬁu_ b

g g (SRS M) +NE - ) - 1 (S E) Y1 (s )

2s
= (mi- nf)(rncz)' m;) +O(S'2) malmlal:r;dmblmz
S
2 2 2 2
- (IR m @ mm,)

So t* is positive if m,<m Um,>m,or m,>m, Um < m,.
For instance mm® mm(m,= m,= m m,=m, = m) gives:
> (' - )" (mMm® mm)
S
that happens to be the same result as for the backward
value of uin mMm® mm(« forward t* value in rm® mn).

Note that if either m,= m, or my=m,, t*is g 1/%. An
example is resonance production mm® mm* (m* > m) :
nf(m*z - m?)?

2 ) <0 (mm® mm)

t7 » -
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