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The Monte Carlo method

A numerical technique for calculating probabilities &
related quantities using sequences of random numbers.

The usual steps:
(1) generate sequence ry, I,, ..., I, uniformin [O,1].

(2) use them to produce another sequence X, X,, ..., X,
distributed according to the distribution f(x) of interrest

(3) use obtained x values to estimate some property of
f(x), e.qg. fraction of x values within [a,b] = (‘?r(x)dx

P MC calculation is a sort of integration (at least formally).

b
Usually trivial for 1D: Q’(X)dx obtainable by other methods.

however MC more powerful for multi-dimensional integrals.

MC x values = "simulated data”
® used for testing statistical procedures

MC methods a wide & own field in itself -

Here focus on the generation of arbritrary distributions &
spend some time trying to answer the simple question:
"how can | generate the type of distribution | need?”.

More thorough & deeper reviews of field can be found in e.g.

V. Karimaki: Monte Carlo menetelmat —
opintomoniste HU-SEFT 1993-01
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Random number generators

Goal: to get uniformly distributed values in [0,1].
P "random number generator”

= computer algorithm to generate r, r,, ..., I,

Example: multiplicative linear congruential generator (MLCG)
N, = (an) mod m, where

n; = integer, a = multiplier, m= modulus & n, = seed.
NB! mod = modulus (remainder), e.g. 27 mod 5 =2

n; follow periodic sequence in[1, m-1] b
r; = n, /mdistributed in [0O,1].

choose a & mso that r;'s pass various tests of randomness:
uniform distribution in [0,1], all pairs independent (no
correlations) & period long (maximum = m- 1)

e.g. L’Ecuyer, Commun. ACM 31(1988)742: a = 40692, m = 2147483399

(period »
2 x10°9)

on your
right a test
with 10k
generated
values

Far better algorithms exist e.g. RANMAR, period » 2 x10%3.

Many good algorithms implemented in program libraries e.g.
RANMAR & RANLUX in the CERN program libraries.

NB! r;'s like above in reality pseudorandom numbers

for more info see e.g. F. James, Comput. Phys. Commun. 60 (1990) 111
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Exponential distribution:

Exponential distribution for a continuous random variable x is
1
f(xx)==e (x30)
X

Exponential distribution characterized by only one parameter x.
Expectation value & variance of exponential distribution
¥

<1 (G. Cowan)
E[X] = O;e' XXdx = x
0

distributions (x =1, 2 & 5).

Example: proper decay time of an unstable particle/state

f(t;t) :tle"/“ (t3 0) { = mean life time

Exponential distribution has unique feature — "lack of memory”

_ 3t )= absolute starting (& end)
- LIt ) =1 point ("zero”) irrelevant

Very convient for any lifetime measurement in HEP
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Gaussian (or normal) distribution:

Gaussian distribution for a continuous random variable x is

f(X;mS):\/iengwTﬁzg (-¥ <Xx<¥)
S @

Gaussian distribution is characterized by two parameters m& s .
Expectation value & variance of gaussian distribution:
(G. Cowan)

¥

E[x] = c\} f(x;ms)dx=m

¥

V[X] = dx m?f(x;ms)dx=s?

NB! m& s often used for mean &
spread of any random variable
(i.e. not necessarily Gaussian).

Special case: m=0,s =1 ("standard Gaussian”)
(x)——exp x2/2), F(X) = N (x')dx

if y Gaussian distributed with mé& s, then x = (y- m)/s follows j (x)
& the cumulative distribution F(y) related to F (x). No analytic
expression for the cumulative distribution F (x) exists. Numerical
evaluations of F (x) are tabulated & available in program libraries
e.g. 68.3 % within 1s, 90 % within 1.645s, 95 % within 1.960s,
99.7 % within 3s etc... (for two-tailed Gaussians).

Relativistic kinematics 2005 ) /4
MC methods & event generators Kenneth Osterberg




HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET
UNIVERSITY OF HELSINKI Central Ilmlt theorem

Why are errors often Gaussian ?

A consequence of the Central Limit Theorem (CLT).
Look at behaviour of a variable that is the sum of several
others. Irrespective of the distribution of the orginal
variables, if one takes the sum X of N independent
variables x, i = 1,..., N, each taken from a distribution
with mean m& variance V,, the distribution for X has an

expectation value & variance o o
| E[X]=q m VIX]=gQV
& becomes gaussian N® ¥. i i

Note V[X] equation above holds only for independent variables,
formal proof of CLT tedious so we’ll give a MC "proof” instead:

1 random

number 2 random

m=0.5 & numbers

$2=1/12 m=1.0

(R.J. Barlow)

3 q 12 random
ranb om numbers

”“ml grs m=6.0 &

m= L. s2=1.0

(~gaussian)

Already after summing ~12 evenly distributed random
numbers in [0,1] one obtains a Gaussian like distribution
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Breit-Wigner distribution:
Cauchy distribution for a continuous random variable x is
1 1

f(x)=—
(x) FRER:

Special case: the Breit-Wigner (common in particle & nuclear physics)

1 G/2 where parameters x,

& Gare mass & width
2 2
p (G/2)" +(X- %) of a resonant state

F(XGx) =

Breit-Wigner distribution has a peculiar mathematical behaviour

(G. Cowan)
E[x] = not well defined

V[X] =¥
However the Breit-Wigner can

be described by 2 parameters:

Xy = peak position (i.e. mode
or most probable value)

G = full width at half maximum

Example: describes a resonance (an unstable particle or state)
e.g. the W gauge boson responsible for radioactive decays (or
weak decays). G= decay width (1 inverse of mean life time).

NB! in practice the mean & variance are calculable for a physical
phenomena described by a Breit-Wigner since in reality the tails

of the distribution are finite due to energy conservation.
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Inverse transform method
givenry, r,, ..., r,uniformin [0,1], find X, X,,...,X,, Which
follow f(X) by finding a suitable transformation x(r).

(G. Cowan)

r x(r")

Require: P(r £1') = P(x £ x(r")) i.e.(\)a(f)dr =r'= (\j (x")dx'=F(x(r"))

A general method that always :é/vorks In cas¥e the inverse
function of the cumulative distribution function F(x) can
be tabularized or is known. The generation steps for
random number with the inverse transform method are:

e sample r from a uniform distribution [0,1]
o calculate x = F-(r)

Generated random numbers x obey the distribution f(x).
From the following graph it is easy to see that it works.

. (V.Karimaki)
uniform
density
dense scarce
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The inverse transform method can also be used for
discrete distributions. One can tabularize the cumulative
distribution function F,=S_j p,, =0, ..., N. If there are
infinite number of probabilities p, then N has to be set so
large that F» 1. The generation algorithm:

(i) sample r from a uniform distribution [0,1]
(i) find kso that F,_, <r <F,.

The algorithm will generate integer numbers k whose
distribution is proportional to the probability p,.

Example of inverse transform method:

exponential pdf: f(x.x)=x'e** (x3 0)

Cumulative distribution function: F(x) = (5 g X*dx' =1- ¥

Assume r 1 [0,1], now can set r = F(X) & solve for x(r) P
X(r)=-xIn@-r) (NB! x(r)=-xInr workstoo.)

(G. Cowan)
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Acceptance-rejection method (von Neumann)

(G. Cowan)
Often an analytical
solution impossible
or impractical b
acceptance- rejection
method (or hit-or-miss):
enclose distribution
In a box with height

frax = Max(f(x))

(1) generate a random number X, uniform in [X_ i, X...J;
L. X=X n + I (X0 — Xmin) Where 1, is uniform in [0,1]

(i) generate a second independent random u uniformly

distributed between 0 and f_, = max(f(x)), i.e.u=r, f__..

(i) if u < f(x), then accept x. If not, reject x and repeat.
(G. Cowan)
Example:

f(X)=2(1+x°) (-1EX£D)

frax = ¥4 points that lie
below curve are accepted.
Distribution of accepted
combinations shown below.

Efficiency of the algorithm
depends on the area ratio of
distribution to enclosing box.
Algorithm inefficient for very
"peaky” distributions.
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Importance sampling:

To improve efficiency (B. Roe)

of acceptance-rejection
method, generate first
random number
according to a
distribution g(x) such
that f,(x) = Cg(x) > f(X)
throughout interval. x
choosen according to
g(x) are rejected if uf,(X)
> f(x), where ul [0,1].

Isotropic direction in 3 dimensions:

Isotropy means the density is proportional to the solid angle, the
differential angle element dW = dcosgdf. Hence generate uniform
distribution in [- 1,1] for cosg & uniform distribution in [0, 2p] for f.
cosg =(2u,-1) & f =2pu,, whereu, & u, uniformin[0,]

Gaussian distributed random numbers: if u; & u, uniform in [0,1]

@ z=sin2pu,/- 2Ilnu, and z,=cos2pu./- 2Inu,

(b) construct v; = 2u;—1 & v, = 2u,—1 (uniform in [-1,1]), if
r> =v,? + v,2 > 1 start over again, otherwise

zlzvl\/- 2Inr?/r? and z :vz\/- 2Inr?/r?
2, & z, are independent & Gaussian distributed with m=0& s =1

z' = m+ s z are Gaussian distributed with mean mé& variance s 2
NB! many Gaussian algorithms implemented in program libraries.
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Poisson distribution: (iterate until a successful choice made):

begin with k=1 and set A = 1 to start

() generate u. replace A with uA

(i) if A<exp(- n), where nis the mean of the Poisson
distribution, accept n, = k- 1 and stop.

(i) increment k by 1 and repeat (i).

For large n (> ~10) it may be satisfactory (& much faster) to
approximate Poisson distribution by a Gaussian distribution.
Generate z from f(z,0,1) & then accept x = max(0,[n + zOn + 0.5])
where [ ] signifies greatest integer £ the expression in [ ].

Accuracy of Monte Carlo methods:

MC calculation = integration. (G. Cowan)
compare to trapezoidal rule,
n = # of computing steps

For 1-dimensional integral:
MC: n pu number of generated
random values, accuracy p1/On

trapezoid: n u number of
subdivisions, accuracy p1/n?

In 1D trapezoid wins!
But in d dimensions:

MC: accuracy p 1/(n - independent of d!
trapezoid: accuracy p 1/n%d

MC wins for d > 4. Gaussian quadrature better than

trapezoid but for high enough d, MC always wins!!
(see e.g. F. James, Rep. Prog. Phys. 43 (1980) 1145).
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