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Course literature/content/grading

u Literature:

n Lecture notes —main source due to lack of good book
(copies available on homepage & in folder on 2" floor).

n E. Byckling & K. Kajantie: Particle kinematics (John
Wiley & Sons 1973) — a rather theoretical & outdated
text book, useful for side reading & solving exercises.

n PDG’s kinematics review (link at course homepage).

n W. von Schlippe: Lectures on relativistic kinematics,
St. Petersburg State University (see course homepage).

u Content

n Special relativity: Lorentz transformations & invariants,
reference frames, units and definitions.

n Phase space: phase space integral, total & differential
cross section and Jacobian determinants.

n 2-particle final states: 2-particle decay & scattering, the
Mandelstam variables and physically allowed regions.

n 3-particle final states: 3-particle decay & scattering.
n Inclusive reactions & multiparticle production

n Monte Carlo methods

n Monte Carlo event generators

u Grading

n Exercises (~ 8- 9 exercise papers) — 30 % weight,
Final exam at the end of the course — 70 % weight.

n Exercises given on Thursdays, to be returned by next
Wednesday afternoon (1. exercise will be given next week)
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Relativistic kinematics applied in high energy
physics collisions at particle accelerators

(an artist view of electron and positron interactions at LEP)
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Or in describing cosmic rays

Cosmic rays: showers upto 10%°eV seen b
ECM» 400 TeV (if target to be assumed proton)
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The fundamental of special relativity is the fact that the
velocity of light, c (= 2.99792 ... * 108 m/s in vacuum),
Is the same in all inertial frames b all measurements
Involving distances is influenced since light is supposed
to be the fastest means of communication. The
influence can be expressed by Lorentz transformations.

Take two reference frames Sand S moving with a
constant velocity with respect to each other. A world
point ("event”) in space-time is defined by its
coordinates x,y, z, tand X, y', Z, t" in the respective
frames. Assume a light signal is sent out from one
world point ("P,”) and received in another world point
("P,”) then the distance d:\/(xz- %) +(Y,- V) +(z - )

but also d=c(t,- t) P (X, - X)* +(¥,- Y1)° +(z- z)* =c*(t, - t,)°

same could be written in frame S with primed
coordinates and with the same constant c.

iIntroduce t = ict and go over to infinitesimal distances:
ds? = c2dt? - dx?- dy? - dZ =- (A +dy? +dZ +dt ?)

From above concludeds=0pP ds =0

P, P,
(\jls(in Sframe) = (\)Is' (in S frame) Invariant
P P

dsis called the invariant line element
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Now given two events P, and P, with a certain
distance in frame S is there a frame S in which
these 2 events appear at the same time (Dt” = 0)?

Ds’ =- (Dx* +Dy” + Dz* + Dt *) =- (Dx“+Dy"*+Dz*) £0
A frame in which two events happen at the same
time can only be found if and only if:

Ds*=c’Dt*- Dx°- Dy’- DZZ£0  spacelike distance
Can two events P, and P, appear to happen in the
same place is some frame S (Dx?2+ Dy 2+ DZ?2=0)?

Ds® =- (Dx* +Dy* + Dz’ + Dt *) =- Dt *=c*Dt*3 0

A frame in which two events happen in the same
place can only be found if and only if:

Ds? =c’Dt? - Dx?- Dy?- D23 0 timelike distance

Since Ds? is invariant hence either Ds? £ 0 in all Lorentz

frames or Ds? 3 0 in all Lorentz frames. There is also the
case Ds? = 0 which applies to the distance between two
events connected by a light signal (see previous page).
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universiTy of Hesinke causality and the light cone

Consider all possible events w. r. t. a given one, put into
origo (x=y=z=1t=0) and draw only (x,t). The distance

from origo is given by the invariant: s =c%*- x*- y*- 7°

+ A ¢
AR ct| timelike S

¥

Q‘//, future &)

%%
0o}
/)G)
spacelike spacelike X

timelike
past

» & = 0: connects events that can be reached by a light
signal from origo ("lightlike”). Defines the "light cone”.

» &2 > 0: timelike events; if s> 0, the event is in the
forward light cone (in the absolute future); if s< 0, the
event is in the backward light cone (in the absolute
past). Since £ is invariant, only events in the backward
cone can have an influence on origo and origo can only
have an influence on events in the forward cone.

» & < 0: spacelike events; no interaction with origo.

causality expressed simply; very relevant for cosmology
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invariance: Ds? =- (Dx? + Dy? + DZ + Dt ?) = - (Dx'?+Dy"?+Dz?+Dt *?)

If translations excluded, only transformations leaving Ds?
invariant are rotations connected with ¢ ; a rotation a in
the z- t plane is singled out by the figure below

z=27cosa - t'snai

7 trividly x=xandy=V
t:z'sina+t'cosag y y=y

determine a by being in frame Sand observing Z=0 of S:

z:-t'sinai; 7

-—=-—=tana =i—
[ =t'cosa E t ic C b
cosa = = ! °g sna= tana__ - vje :igX
Vi+tan’a \/1- v?/c? Vi+tan’a \/1- v2/c? ¢
Lorentz transformations:
R X=X X'=X
XA X, y = yl y': y
z=g(Z+w') Z=9(z- wt)
t=g(t+vz/c®) t'=g(t- vz/c?)
S
S I
v S to SLorentz
Z,> transformations
- z obtained by
g y change of vto -v
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The equations of previous page form a special class of
Lorentz transformations but that is all that is needed
here. The most general Lorentz transformation
equations have the simplest form in four-vector space x
= (X0, xt, X2, x3) = (X9, X) = (ct, X, Y, 2). For any four-vector
the general Lorentz transformation is given as:

3
®]

a=La a"= La where L is a real matrix
0 @2 0 0 09
0 -1 0 0+

0 -1 0% Y

the metric tensor:  9=(9,,) =(8™) =
§o 0 0 -1

2 m Q 0,0 —=u~
the scalar product: a%=gd a,p"=q 9ma0 =ab - a*p

mn

A Lorentz transformation is a linear transformation that
leaves the scalar product ab invariant (b L has to satisfy
gL-g=LT). Can be expressed as a boost (see previous page)
followed by a 3-dimensional rotation. In addition, Lorentz
transformations of the course satisfy following conditions:
detL =+1, i.e gpatia reflectionsexcluded
L3 1, signof 0-component of timelikevector invariant

. a®=g(a’- va’/c)
The specific Lorentz a1z g
transformation solution of _
previous page would give: & =4

a®=g(a’®- va’/c)
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The Lorentz transformations form a group, i.e. the
product of two Lorentz transformations is again a
Lorentz transformation. If one performs consecutively
two Lorentz transformations with parameters v, and v,:

Ve = (v +V,) (L, /D) gy = aig(1+vy,/c?)

More clearly visible in terms of a new parameter x rapidity
v/c=tanhx g=coshx gv/c=sinhx

which map the velocity range - 1 £ v/c £ 1 into the rapidity

range - ¥ £ X £ ¥. The product of two transformations is
v, = ctanhx, = c(tanhx, +tanhx;,)

(1+ tanhx, tanhx;)
hence rapidities are additive under parallell Lorentz
transformations. If vis replaced by x in general formula

a’ =a" coshx +a"”sinhx light cone

a’=a’sinhx +a°coshx 4 (%)2- (a3)2= a2> 0 /
a°  timelike a

Ny

=ctanh(x, +X,); X3 =X +X,

The transformation
above leaves the
hyperbolas (a%?2 -
(a%)? = constant, i.e.
invariant. Rapidity x
corre_sponds tq an h
rotation angle in the
a’- a3 plane (hence
the additivity).

JaZ (coshx, sinhx)

|\

spacelike a
(a%)2- (a%)2=a%< 0

— ) O+ &) S
X

- a®(sinhx, coshx)
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Pseudorapidity
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rapidity x = In[(E+p,)/(E- p,)]/2 becomes pseudorapidity A
= - In(tan(g/2)) if particle masses are neglected (P,E » m).

100

90

80

Theta vs eta

70
60

AN

50

40

polar angle -

30
20

10 pseudorapidity
0 T T T T

0 0.5 1 15 2

Particle production

g = 90°
h=0
g = 10°
h»24
q=170° ®
h»-24

®

®

4N
dn
100 TeV
|| I =
N=-Intg 6/2 3 5 7 8 9 10 11 12 13 n
| | |
6 100 10 1 0.1 0.01 0.001 mrad
I 1 I 1 I
<p>_0.5 GeVv 0.005 005 0.5 5 S0 TeV
2
I 1 1 1
L& 0.3 3 30 300 3000 m
B
Rel ativistic kinematics 2005 i 1/11
Introduction and Phase space Kenneth Osterberg




HELSINGIN YLIOPISTO
% HELSINGFORS UNIVERSITET . .
universiTy of Hesin P Seudospherical coordinates

An arbitrary four-vector a can be parametrized by the

parameters of an approriate standard form just like the

three-dimensional spherical coordinates give a vector:
a = A(singcosf ,singsinf,cosq) dwW=d cosqdf

These "pseudospherical”’ coordinates are usually defined
by (X, g, f) & sometimes by (X, z, ). z is a hyperrotation
in the t—xy plane leaving the zcomponent constant.

a’=Acoshz a' =Asinhzcosf a’=Asnhzsinf dg=dcoshzdf
ranges: 0E QgE P, OEFE2Dp,-¥EXE¥, 0L ZE ¥,

If a (a2 > 0) is timelike then
a= \/g (coshx, sinhxsing cosf , sinhxsingsinf , sinhxcosg) or
a:\/g (coshxcoshz, coshx sinhz cosf, coshxsinhz sinf, sinhx)

If a (a2 < 0) is spacelike then
a=+/- a?(sinhx, coshxsingcosf , coshxsingsinf, coshxcosg) or
a=4/- a?(sinhxcoshz, sinhxsinhz cosf , sinhxsinhz sinf , coshx)

W? (cosq, f) and g° (coshz, f) parametrize Lorentz
transformations leaving a® and a3 invariant, respectively.
They constitute a O(3) and a O(1,2) group, respectively.
The elements of O(1,2) leave A?=()*- (a)*- (&°)*=a*- (a°)
invariant just as the elements of O(3) leave

a’ =(a)* +(a°)’ +(a)° =- & +(@)? invariant. This is now sufficient.
NB! O(3) is a non-Abelian group, i.e. the order of two
rotations ("generators”) plays a difference (see gauge theory)
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|
Abelian group: rotation on a plane
Non-abelian group: rotation in space
!
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Lets now give the matrices of the Lorentz transformation:

L(x,q.7) =R(F)R (@)L, (x) =

a o0 O O O O O ¢geosx 0 O sinhxgo
gO cosf - sinf OEO cosg O sinq-g_g 0 10 0 =
0 snf cosf 00 0 1 0% 0 01 0
§O 0 0 1%0 -sing 0 cosqisinhx 0 0 coshxp

L(x,z,f)=R,(F)L(2)L,(x) =
@4 0 0 OgeoshV sinhV 0 Oteeoshx 0 O 6
§0 cosf -snf OgsnhV coshV 0 0 0 10 0 -
S0 sinf cosf 0% O 0 100 01 N
0 0 0 1% 0 0 O 1£S|nhx 0 0 coshxg

Applied to standard vectors Ja? (1L,0,0,0) or J-a (0,0,0,1), the
solutions of previous page should be obtained. Notice
that even in the rest frame there will be a non-zero value
a direct along z axis, rapidity creates a boost along z.

The corresponding differential volume elements are

d*a =da’da'da’da’® = d(a®) A*dAdW/2a°;  A=|a|
d*a=da’da'da’da’ =d(a’)A*dAdg/2a’;, A%=a’- (a%)°

The differential d*a is of course Lorentz invariant.

(‘)iW: 4p (‘)ig =¥
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The three-velocity is defined as v = dx/dt butsincet is
not an invariant, so vV doesn’t transform like the space
component of a four-vector. To construct a velocity four-
vector, one needs to find some invariant variable related
to time. A natural choice is proper time ¢:

dt?=c2x? b df =dt4/1- c2(dX/ct P = dt /g(V)

In the rest frame, t = ¢ that explains the term proper time.
The factor g causes time dilation. Define four-velocity as:

dx _ dx dt _, dx (. — 2 2
u= = =g(v)—=g¢g(Vv)l\c,V p u°==c
=g =9 =9 )(c, V)

u is a four-vector so u? is an (timelike) invariant. The basic
kinematics four-vector is the four-momentum defined as:

p=mu=mg(V)(c,v)=(E/c,p) P p?>=m3c?=(E/c)f- P>
from this equation one can obtain the following relations:
b°V/c=pc/E g(V)=E/mc* bg(V)=p/mc

the Lorentz transformation of the four-momentum is:
p= P, p,'=g(p, - VE/c?)
P, =Py E'=9(E- vp,)
for the rapidity x this leads to the following expression:
x =arctanh (v/c) =1/2In{(1+v/c) /(- v/c)}
X =arcsinh(vg/c) = In{g(1+ v/c)}
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Natural units:
Special relativity: E? = pc® +mfc?

Have 3 fundamental units: length L, time T and energy E
2 natural constants: ¢ =3.0X0° m/s, h =6.6X0 *GeVs

Setc=1=[L]/[T] b [T]=[L] (applied e.qg. in four-vectors)

Alsoseth=1=[E] x[T] b [L] =[T] =1/ [E] (= GeV-?)
One degree-of-freedom left so choose [E] = GeV

1 GeV is a tiny portion of energy. 1 GeV = 1.6-10-10 ]
M, » 1 g =15.6-102 GeV/c?
Viee» 1 M/s ® E, =0.5:10-3J = 3.1 x10° GeV
U E e = 14000 GeV (collision energy at start 2007)

To rehabilitate LHC...

Stored energy/beam:

3.2 10 protons * 7000 GeV » 3.6-108J

M, » 100 T
this corresponds to a e

v, . » 300 km/h
Now E*’=p?’+nf P [E]=[P]=[m=1GeV

truck

Define b:% (0£ b<1) g:\/117 (Leg<¥)

e.g. b=P/E, g=E/m, and <lifetime> = bxgxc xt
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The choice of energy variable (given in eV) is not unique:

e kinetic energy, T= E—-m, is used in the domain where
the rest energy > the kinetic energy (e.g. nuclear physics).

» total energy, E, is sometimes used at high energies.

* momentum, P, is normally used at collider experiments
(magnets select by momentum, experiments measure dito !!)

Useful relations to remember by heart are:
hc =197.33 MeV fm h =6.5822 x10-22 MeV s

e.g. Eof a photon: E =hc// »1240//[fm] MeV

Physically p is always forward timelike, E > 0, but one can
also formally consider backward timelike four-momenta. If
p=(E,p) is backward timelike, - p=(-E- p) is then the four-
momentum of a physical particle (QM b the antiparticle).

Scalar products p xp; =EE; - p xp; are invariant by

definition. Some scalar products are very commonly used

like for example the two particle invariant mass squared:
S = (pl+ p2)2 = (E1+ E2)2 - (|_31+ ﬁz)z =m; +m; +2p, Xp,

another one is the invariant momentum transfer squared
b, :(pl' p2)2 :(E1' Ez)z' (|_31' f’z)z =y +m; - 2p, xp,

since m, and m, are constants, s, and t,, will attain their

extreme values simultaneously, i.e. when v, =v,, hence
p,xp, 2 mm, (foundbygoingtov,=v,=0) P

s, (m+m)  t,£(m-m) (=whenv, =v,inany frame)

Relativistic kinematics 2005 . 1/17
Introduction and Phase space Kenneth Osterberg




HELSINGIN YLIOPISTO
% HELSINGFORS UNIVERSITET .
unvirsity of nesiaeful frames for scattering processes

Let’s introduce some frames, defined by the initial state of
a scattering process. In a two-particle process, particles a
and b with four-momenta pa=(Ea,l3a) & po=(Eb,|30) interact.

1. Laboratory frame (LF) is defined as the frame in
which the experiment is carried out and all energies
and momenta measured. This is the primary frame
from which quantities (usually denoted by an index
L) are transformed to other systems.

2. Centre-of-mass frame (CMF) is defined as the frame
in which p,+B,=0. The CMF quantities are usually
denoted by an asterisk or an index CM.

3. Target (TF) and beam frames (BF) are defined as
the frames in which p, =0and p. =0 respectively.
Many experiments are fixed target experiments, i.e.
LF = TF. Kinematically TF and BF are equivalent.

4. Colliding beam frame (CBF) is sometimes defined
as the frame in which two beams collide (usually the
same as LF) with an angle g. If the momenta of the
colliding particles is equal & g = 0 then CBF = CMS.

CBF example with equal momenta & a collision angle g
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Consider first Lorentz transformations between the CMF
and TF frames. Initial state can be expressed as follows:

p.=(E.,00R) p. =(E:,00R))
p, =(E;0,0,- F) p; =(m,,0,0,0)

where the direction of motion has been chosen as the z
axis. The Lorentz transformation equations are now:

P =g™(P - v"E)) v*M isvelocity

E =g"™(E! - vW'P) of CMFinTF
need to determine veM, Total energy and momentum of a
group of particles is Eq, Be in some reference frame then

Viot = Prot/ Bt Giot = Bt/ My GiotViot = Prot/ Myt

where m, =4EZ - B, =+/s is the invariant mass of the
group of particles. For a 2-particle system this becomes:

5° 8, =(E,+B,)*- (R + P)° =(B2 +m)* - (R)* =nt +nf +2mE,
Now the CMF-TF relation can be expressed as:
VR fE +m) M =E+m)Vs P =R s
Inserting these into the Lorentz transformation equations
P =mp Vs £, =g +mE /s
R=mpVs=F  E=mlm+El)s
The Lorentz transformations can be done explicitly as
above but in more complicated cases this becomes too

tedious (and error prone) so instead noninvariants will be
expressed in terms of invariants to make algebra easier.
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For the target frame (TF) we have p, =0 and E; =m,
£l =(s- - nf)/am, (R[)?=(ED?- nf ={(s- nf- nf)- anfrnf}/ant

To simplify we introduce a kinematical function /:
[(XY,2) =(X- Y- 2)°- dyz=X*+y* + 7 - 2Xy- 2yz- 22X

:{x- (WJy + ﬁ)ZHx- E ﬁ)z}
={Vx- Jy -2y V- |y ey - V2

/ is invariant under all permutations of its arguments (see

above). / is sometimes called the triangle function since
- 1(x,y,2)/4 is the area of a triangle with sides v,y andy'z

for TF momentum we get: P :\// (smg,np) /2m,

now: /(s mZ, mé) ={s- (m, +m?f s (m, - m |

thus P,Tis real if: +/s® m, +m,

the threshold value m,+m, s the smallest value Gs
can attain. The same threshold also appears if one

writes the kinetic energy T, of a particle in terms of s.
Ta = Ez-ar - m, :{S- (ma + mb)z}/zmb

For / there are some cases with special interest:
1(%,Y,y) =X(x- 4y) 1 (%, Y,0)=(x- y)?

the first special case is relevant in e.g. the case where
there are two particles with the same mass that are
scattering and the second e.g. in the case one of the
scattering particles is a massless patrticle, e.g. a photon.
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For the centre-of-mass frame (CMF):
P=P =P s=E.+E, b

Vs =P f e mi P f o m
s is equal to the total energy in CMF. One obtains the
following expression for CMF energy and momentum:

E.=(s+mZ- md)/2vs
P = \// (s, mZ, m§)/2\/§

E,=vs-E, b E =(s- m+m)/2Vs

If we return to the transformation between CMF & TF,
we can expand the expression for VPM & @M using the
Taylor expansion of the square root of (1+e) & 1/(1+e),
an approximation valid for the case where s» m?2, m2.

vM = F%T = \/l (S,ﬂﬁ,ﬂf) »]1- an +0(s 2)

(El+m) (s- mE+np) S

M_(EJWL)_(S-WﬁWf)»wE -1/2
T amds om0

oM om _ Py \//(S"“i’“ﬁ) Vs& m nf 2,0
=2 = » Y3 b Th o522
v Vs 2mys ”Lgl s s ¢ )E;
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