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dCache Cells
I’ve been asked to report on our dCache deployment here at Fermilab.  Setting up an optimized 
dCache is far from obvious, & I’m happy to share our layout.   Your dCache layout may be different.

• Rule 1:   There are admin cells & IO cells - never mix them.
• The most common mistake is putting gridftp doors on admin nodes
• IO cells (and nodes) can go up & down, but when admin cells go up & down, the effects 

can ripple throughout the entire system

• Important Admin cells - separate node for each:
• “Home” admin cells - PoolManager, LocationManager, LoginBroker, 

                                Broadcast Cell & general PAM cell 
• PNFS server & PNFSManager should be on the same node
• SRM + srm components + PinManager should be on the same node
• I typically run multiple dCap doors on a node, & generally don’t mix other other cells with 

dCap cells.   dCap is very scalable & I allow 4000 sessions/door.

• Other Admin cells - need to be on different nodes than main cells, but can be combined as 
needed:        gPlazma,    2 replica managers,    Info Provider/Collector,      Httpd,    Billing,    etc.

• Up-to-date dCache batch files available at http://cmsdcam2.fnal.gov/dcache/batch/batchlist.html

• We are in the process of replacing all admin nodes with new machines - before run starts
• Planning on moving all admin nodes to 64-bit SL5 next Tuesday.  (Pnfs requires code changes)

• Detailed layout on next page.  
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Admin Current Physical Deployment
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Node Bought Type GB Use

cmsdca0 Jul05 SL4,i686 4 PoolManager,  AdminDoor,  LocationManager,  Broadcast, 
PAM,  LoginBroker  (hsmcontrol when it works)

cmsdca Jul07 SL4,x86_64 8 4 R/O-dCap,  3 Restricted-dCap
cmsdca1 Jul07 SL4,x86_64 8 4 R/O-dCap,  4 Restricted-dCap
cmsdca3 Aug08 SL4,x86_64 16 3 R/O-dCap,  3 Restricted-dCap

cmsdca2 Jul07 SL4,x86_64 8 SRM,  PinManager, ThreadManager,  GSIFtpManager, 
CopyManager, GSI-PAM

cmsdca4 Jul07 SL4,x86_64 8 gPlazma,  2 ReplicaManagers, 
postgres database for ReplicaManagers

cmspnfs1 Jan08 SL4,x86_64 32 PNFS Server,  PnfsManager, dir,  Cleaner
Postgres DB for PNFS + Companion

cmspnfs3 Jun07 SL4,x86_64 12 PNFS Hot space + database backup
cmssrv57 Jul07 SL4,x86_64 8 Postgres database for PNFS+PinManager

cmsdcam Jul07 SL4,x86_64 8 Httpd,  Billing,  Statistics,  Topo,  WebCollector,  PoolCollector,  
InfoCollector, InfoProvider  Postgres db for billing

cmsdcam2 Jul05 SL4,x86_64 4 General Montoring Node

cmsdcam3 Jul07 SL4,x86_64 8 SRMWatch, General Monitoring, SE-GIP
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PNFS Server
We replace our PNFS server every 18-24 months - very critical node.
We typically spend ~20K$ on this single node to ensure adequate performance.
Pay very close attention to independent disk layout for databases & logs & system.

We spent more than 2 years working the obscure bugs out of PNFS when we deployed dCache/
Enstore for RunII (CDF/D0).   We reached a point where we had stable operations -- we are very 
very leery of moving to Chimera at this point in the LHC program.  

• Moving to Chimera also requires changes in Enstore databases, a lab-wide change.
• Decided FNAL won’t be the among the 1st to move to Chimera - not even planned right now
• We have tools in place to track down “bad” users - those doing finds, recursive ls, etc.

We found that we can get dramatic PNFS server performance increases if we:

• Set all logging parameters in pnfsSetup to 0 (no logging)
• Redirect all log output from the PNFS Server to /dev/null

• These last 2 items made us nervous (no logs!), but we’ve found that this made PNFS reliable 
& we didn’t have to check for errors any more.

• We also compile the PNFS server on the node we are going to run it on
• We had to disable client authentication - we found tremendous & unexplainable amounts of 

context switching during PNFS server calls.  Patrick changed PNFS & added authentication as an 
option.  Disabling authentication reduced context switching significantly.   ---->  “FastPnfs” 
option, available at dCache.org web site

We are planning on switching from Postgres to BerkeleyDB as underlying pnfs database on April 7.  
• Factor of 4 speed boost
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Databases
Putting databases on the node local to the accessing cell generally provides the highest throughput.  

• Especially true for PNFS, & PNFSManager
• Only exception for us is the SRM/Pin database - we run this on a separate node

All of our databases are password protected - we use pgpass - this means the password are not in 
the batch or setup files.    (Then they are in a specified root-owned 400 permission file)

Do not write logs & database data files to the same partition - big hit in performance

Raid level of database disk is important too - documentation says Raid5 is bad.   Raid10 is good.   This 
has a big effect again on performance.

Lots of database details, including parameter settings we use in talk “Postgres Basics” - I presented 
this talk at the dCache workshop recently in Karlsruhe.   I attached it to this meeting’s talks as well.

5



dCache Deployment - What works for USCMSJon Bakken March 30, 2009

SRM Deployment
Based on advice from Timur, we do not run the standard deployment of the SRM
• (Have not understood why this was never propagated back to general use)

Run SRM + PinManager + all cells in the utility JVM (the RemoteTransferManagers & 
CopyManagers) inside the Tomcat web application
• Timur’s reason was based on evidence that the communication for messages passed 

within a single JVM are much faster than those passed between JVMs.
• Since SRM talks to PinManager & TransferManagers, this led to a large performance 

boost.
• We’ve been running this way for ~3 years & it has worked well for us

Also based on Timur’s advice, we run the database for SRM/Pinning on a separate node.
• Only case where we run a database not on the ‘local’ node.  
• Needed because of the large resource consumption by the SRM

Note:  We do not run SpaceManager at all - the concepts of space tokens don’t exist.
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SRM Parameters
Because of the large number of transfers, we need to increase the default SRM parameters. Here are 
the list of our changes:

acceptCount=10000 in /opt/d-cache/libexec/apache-tomcat-5.5.20/conf/server.xml, BIG recent change

gsiftpMaxStreamsPerClient=20
srmBufferSize=2097152
srmTcpBufferSize=2097152
remoteGsiftpIoQueue=WAN
remoteGsiftpMaxTransfers=2000
srmCopyReqThreadPoolSize=2000
performanceMarkerPeriod=30

gsidcapIoQueue=default
srmDbLogEnabled=true
pnfsSrmPath=/pnfs/fnal.gov/usr/cms/WAX
useGPlazmaAuthorizationModule=true
useGPlazmaAuthorizationCell=true
srmProxiesDirectory='${homeRoot}'/dcache-proxies
srmVacuum=false

There are of course corresponding changes in sysctl.conf for tuning the kernel TCP parameters.
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Use dcache.local.run.sh & dcache.local.sh to customize the startup of services

dcache.local.run.sh:
• check for correct deployment of tape services on node
• check if pnfs mounted
• check if pool structure correct
• check if pool writable
• check that certs (CA+CRL) valid
• check for obscure case of data loss  (files cached & control file in mixed state)

dcache.local.sh:
• set ulimit 65K

We run with 4GB JVM for SRM, & 4 GB JVM for Httpd,  1.5 GB JVM for dCache, & 256K for lm, 
otherwise we use the standard 512 MB JVM for all other cells

Twice an hour we query the dCache for its status, & we retry old (many hours) transfers
• Internally retry “No-Mover-Found” 
• Internally retry Stuck P2P transfers
• Internally retry “Waiting” movers

We kill all transfers older than 2.5 days.  (Batch job limit is 2 days)
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Pool Current Physical Deployment
~3 PB of disk (Nexsan SataBeasts) 656 different pools on 129 nodes

• We configure max of 11 TB/pool - balance with startup time (we do not use Berkeley DB) 
• We configure pools to use all but 100 GB of the  unix partition space.
• Newer nodes have 3 pools/node,  Older nodes have 8 pools/nodes, 
• All new disk configured with RAID-6, older disks converted slowly as needed
• Every pool node has a 2 GB bonded network connection,  all on public network

• Pools divided into primary IO section, unmerged resilient section, user small-file resilient 
section, & stage-in from tape section.   For us, segregating the stage-in to a separate section was 
a huge performance boost.    All pools can stage-out to tape.

• Movers:  2 main queues - LAN & WAN
• Before lazy download: 1800-LAN,  50-WAN,  150-P2P movers per pool
• After   lazy download:     25-LAN,  10-WAN,   50-P2P 

One GridFTPDoors run on all pool nodes except pools staging files in from tape

We do CRC transfer checking based on cksum value stored in TMDB, & ignore dCache crcs for WAN
• Provided similar tool for users doing local transfer as well

Make sure you have updatedb.conf configured so locate doesn’t index files on pool disk or pnfs
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Mover Queues 
Rule #2 - Your system won’t work robustly unless your data is equally divided amongst all your pools.

• We run space equalizers to move data between pools - goal is same amount of space used in 
each pool.

• Then, with equally used pools as a given, we’ve found that a random selection of a data pool is 
the best choice.  This continues to distribute data equally & provides the highest bandwidth.

• If data is written uniformly across the pools, reads are also of course optimized
• Key is to use all the hardware you purchased at once.

Before Lazy download, it was possible to be rather cavalier & set a very high number of movers in the 
LAN queue - primarily because the Posix IO on the workers only moved a few bytes at a time.

With Lazy download, large portions of the file are transferred at once & one needs to limit the active 
movers on the LAN queue or the node will crash due to resource exhaustion.

• Unfortunately, the lazy download mode keeps a mover slot open until it exits, sometimes a very 
long time later.    This can lead to mover queuing.

• Wrote  a script that runs every 5 minutes that checks for queuing & tries increasing & quickly 
set back to nominal the max allowed mover value.
• Script acts like a dam’s spillway & tries to prevent overflows(queuing) & floods (resource 

exhaustion)
• By appropriate tuning of timeout parameters, we can start new movers on pools that lazy 

downloads have finished & not on ones that still have active transfers.
• Naive idea works wonderfully.   Works only if majority of LAN transfers are Lazy Download
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Cost Cut
dCache only provides a static cost cut value - primarily used to determine whether to queue request 
or do a pool-to-pool copy.

• A static value is simply insufficient to properly tune varying user load.
• Wrote a simple script that dynamically tunes cost cut every 5 minutes so at most 5% of all 

transfers are pool-to-pool copied.   Cut down on “instantaneous” mover queues significantly.
•
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