LHC Reach at 7 TeV

CMS NOTE 2010/000

Beyond the Standard Model

General Procedure

General Scaling the Distribution Functions

Ratio of parton luminosities for the LHC operating at 7 TeV and 10
TeV, as a function of the invariant mass of the produced final state.

7 TeV requires approximately three times higher integrated luminosity compared to that in a 10 TeV run in order to reach the same sensitivity.

Extra Dimension

Diphoton Channel

- Large Extra Dimension

n_{ED}	95% C.L. Lower Limits on M _S		
	50pb^{-1}	$100 {\rm pb}^{-1}$	$200 {\rm pb}^{-1}$
2	2.0 TeV	2.2 TeV	2.4 TeV
3	2.5 TeV	2.7 TeV	2.9 TeV
4	2.1 TeV	2.2 TeV	2.4 TeV
5	1.9 TeV	2.0 TeV	2.2 TeV
6	1.7 TeV	1.9 TeV	2.0 TeV
7	1.6 TeV	1.8 TeV	1.9 TeV

Signal is broad and also peaks at different mass values for different numbers of extra dimensions and different values of the parameter M_s

- **Evidence (discovery) significance of 3 (5) standard deviations**
- ► A factor of ≈ 8 in the luminosity is required in a 7 TeV run compared to that at 10 TeV.
- Nevertheless with 50 pb-1 of 7 TeV data, the sensitivity of the search already surpasses the current Tevatron limits

- Randall-Sundrum

The 95% C.L. limit (left) and the discovery potential (right) for Randall-Sundrum gravitons in the diphoton channel, as a function of integrated luminosity at the LHC running at 7 TeV.

► Equivalent luminosity for a 7 TeV run is ≈ 4 times higher than that at 10 TeV.

Again, with just 50 pb-1 of 7 TeV data the sensitivity of the search surpasses that at the Tevatron

Monojet Channel

- Large Extra Dimensions

FThe 95% C.L. limit (left) as a function of integrated luminosity and the discovery potential (right) for an integrated luminosity of 200 pb-1, for large extra dimensions in the monojet channel at the LHC running at 7 TeV.

3 times the integrated luminosity of a 10 TeV run is required to reach similar sensitivity at 7 TeV.

Even with as little as 10 pb-1 of integrated luminosity the sensitivity of the search is expected to surpass that at the Tevatron [19], provided that missing transverse energy tails are understood well in early LHC data.

Dielectron and dimuon channels

- Randall-Sundrum

Discovery potential at 5σ significance for electrons (left) and muons (right) for the Randall-Sundrum gravitons at 7 TeV.

Approximately three (ten) times the luminosity of a 10 (14) TeV run is needed to reach similar sensitivity in a 7 TeV run.

The sensitivity of the Tevatron search will be superseded with approximately 100 pb-1 of 7 TeV data.

Higgs Searchs

□ Search sensitivity for an integrated luminosity of 1 fb⁻¹

Expected exclusion limits for the $H \rightarrow WW \rightarrow \ell\ell\nu\nu$ search, assuming absence of signal. The expected range of exclusion is 150-185 GeV.

In absence of a Higgs boson, the expected range of exclusion is 150 < mH < 185 GeV.</p>

Expected significance for the same process

This channel is expected to reach a discovery level sensitivity for the SM Higgs boson in the mass range 160 < mH < 170 GeV</p>

– Expected exclusion limits for the H \rightarrow ZZ \rightarrow 4 leptons search, assuming absence of signal.

– Expected exclusion limits for the H \rightarrow $\gamma\gamma$ search, assuming absence of signal.

– Expected exclusion limits for the SM Higgs, combining seven channels $H \rightarrow W W \rightarrow 2I 2v$ [ee, $\mu\mu$, $e\mu$], $H \rightarrow ZZ \rightarrow 4$ [4e, 4μ , $2e2\mu$], and $H \rightarrow \gamma\gamma$.

In absence of signal, the expected mH -mass range of exclusion is 145-190 GeV.

In the exclusion-limit plots, dashed lines show the average expected exclusion limit without systematic errors, solid lines the average with systematic errors included, and green/yellow bands indicate the expected statistical spread of the limits to be actually observed with data (68% of experimental points are expected to fall within the green bands and 95% within the yellow bands).

