## SUSY and UED in like-sign dimuon

Status for Runlla and Runllb

Mar, 18<sup>th</sup> 2010

Ângelo Santos (IFT-UNESP)

LS di-muon team: Pedro Mercadante, Andrey Shchukin, Jason Mansur, A.S., Alexey Popov, Leo Bellantoni, Carsten Hensel, Vladimir Goryachev

## Outline

- Susy and UED common final states
- Data sets and Pre-selections using np\_lsdimuon package
- Modeling QCD background from Data
- MC normalization factor from Z/  $\gamma^* \rightarrow \mu^+ \mu^-$  mass peak region
- Data- MC distributions after scale factor
- Runlib: Distributions in pre- selection level after all corrections
- Runlla: Distributions in pre- selection level after all corrections
- Runlla: Old optimization cuts
- Conclusion and Plans

#### Susy and UED common final states

- Susy (mSUGRA) models predicts trilepton final states from chargino and neutralino decays.
- For UED, those final states decay from Z<sub>1</sub>/W<sub>1</sub>.
- However, if the mass difference between slepton and neutralino is small, the third lepton can be very soft.
- Thus this analysis has 2 same-sign muons and missing transverse energy in the final states.



## Data sets and Pre-selections using np\_lsdimuon package

- We have been using vjets\_cafe package in the most part of the code to make small skims.
- Data Set:
  - Runlla CSG\_CAF\_MUinclusive\_PASS3\_p18.13.01 data sample
  - Runllb 4 fb<sup>-1</sup> (Summer 2009 DataSet)
- Pre-selections:
  - 2 loose muons with same sign
  - $\chi^2/ndf < 4$
  - dca < 0.2 (no SMT hits) and < 0.02 (with SMT hits)</li>
  - anti-cosmic cut
  - $\Delta Z < 1$  cm and Primary Vertex < 1 cm
- Isolation cut:
  - **Tight muon:** etHalo < 2.5 GeV and etTrkCone < 2.5 GeV
  - Loose muon: etHalo < 4.0 GeV and etTrkCone < 4.0 GeV

## Modeling QCD background from Data

#### • We have 2 samples:

- S sample: 1 muon tight isolated and 1 loose (can also be tight) isolated of same sign.
- Q sample: 1 muon tight isolated and 1 one non isolated of same sign.
- Sample Q is used to model background from Monte Carlo using the non isolated muon pT.
  - Take the momentum distribution in range 5 GeV < pT < 8 GeV
  - And make the distribution ratio between sample S and Q considering different numbers of jets:

$$R(p_T) = \frac{N(p_T)^S}{2N(p_T)^Q}$$

- Apply this ratio in <u>momentum of non isolated muon</u> with pT > 8 GeV.
- QCD background is the <u>subtraction</u> between sample QDATA and sample QMC (both with R(pT) correction).

#### Modeling QCD background from Data

#### **R(pT)** from different number of jets



#### Modeling QCD background from Data

#### **Comparison between QDATA sample and QMC sample**





#### MC is normalized from data

(with new trigger scale factor = 0.9)

#### Data-MC opposite-sign distributions after scale factor



#### Runlib - Distributions in pre-selection levelafter all corrections and <u>pTleading > 15 GeV; pTsecond > 10 GeV</u>; Mpair > 15 GeV









#### Runlib - Distributions in pre-selection level after all corrections and pTleading > 15 GeV; pTsecond > 10 GeV; Mpair > 15 GeV









# Runlla - Distributions in pre-selection level after all corrections and

MC scale factor = 1.0;  $pT^{\text{leading}} > 8 \text{ GeV}$ ;  $pT^{\text{second}} > 8 \text{ GeV}$ 



## Runlla - Distributions in pre-selection level after all corrections and

MC scale factor = 1.0;  $pT^{\text{leading}} > 8 \text{ GeV}$ ;  $pT^{\text{second}} > 8 \text{ GeV}$ 



### **Runlla** analysis with np\_lsdimuon package

#### **Old cuts**

| <b>*</b>                            | Δφ < 2.9 |             |             |                                            |         |         | GeV  |
|-------------------------------------|----------|-------------|-------------|--------------------------------------------|---------|---------|------|
|                                     |          |             |             | MET > 27 GeV                               |         |         |      |
| ♦ 17 GeV < pT <sub>2</sub> < 44 GeV |          |             |             | SigMEt > 6 GeV <sup>-1/2</sup>             |         |         |      |
| ♦ 10 GeV < Mμμ < 100 GeV            |          |             |             | METxpT <sub>2</sub> > 550 GeV <sup>2</sup> |         |         |      |
|                                     | Z+jets   | W+jets      | Diboson     | tt                                         | QCD     | All Bg. | Data |
| Presel.                             | 33.47    | 68.62       | <b>4.64</b> | 0.57                                       | 3615.17 | 3722.47 | 3506 |
| $\Delta \phi$                       | 19.81    | 60.92       | 4.03        | 0.52                                       | 2077.41 | 2162.69 | 2312 |
| pT <sub>2</sub>                     | 5.76     | 7.10        | 2.32        | 0.09                                       | 1.66    | 16.92   | 23   |
| pT <sub>1</sub>                     | 5.69     | 6.83        | 2.30        | 0.09                                       | 0.47    | 15.37   | 21   |
| Μ <sub>μμ</sub>                     | 1.65     | 6.44        | 1.70        | 0.07                                       | 0.69    | 10.54   | 11   |
| MT_2                                | 1.21     | 5.74        | 1.53        | 0.06                                       | 0       | 8.54    | 8    |
| MET                                 | 0.59     | <b>3.96</b> | 1.27        | 0.04                                       | 0       | 5.87    | 4    |
| SigMET                              | 0.59     | 3.96        | 1.27        | 0.04                                       | 0       | 5.87    | 4    |
| METpT2                              | 0.58     | 3.90        | 1.26        | 0.04                                       | 0       | 5.78    | 3    |

### Conclusion

- Expanding the parametrization in low pT region, as well as subtracting the **electro-weak backgrounds** (with non isolated muons) from the **QCD background** (also with non isolated muons), allows us to model the QCD background very well.
- The MC normalization factor of 0.9 (from  $Z/\gamma^* \rightarrow \mu^+\mu^-$  mass peak region) looks to lead to a good agreement between **Data and all electro-weak** backgrounds.
- We have to make a double check in optimization cuts for Runlla due some difference between Data and background.

#### **Plans**

- Make optimization cuts.
- Push this analysis with TMVA
- Finalize the D0 note.