



#### Simulation of Vectorial Bosons + Jets Production: Comparisons Between LO and NLO Calculations

#### Flavia de Almeida Dias SPRACE - IFT/UNESP







- Motivation / Objectives
- Monte Carlo generators
- Tevatron data comparison
- LHC energy (7 TeV) simulation features
- Conclusions



### Z boson production



- Background for new physics searches
  - Supersymmetry
  - Heavy gauge bosons (W', Z')
  - Extra dimensional excitations
- Important tests of Standard Model
  - Tests of perturbative QCD

Strong coupling constant, renormalization and factorization scales, PDFs

#### Detector commissioning

- Absolute electromagnetic energy scale from  $Z \longrightarrow e^+e^-$
- Tracker alignment and momentum resolution from  $Z \longrightarrow \! \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$



# **Objectives**



- Preparatory MC study of major Standard Model background for new physics searches
- Next-to-Leading Order (NLO) contributions
- Matrix Element (ME) corrections to the Parton-Shower (PS) formalism
  - Validation of Monte Carlo (MC) data against Tevatron data
  - Determination of optimized MC parameters for LHC energy simulation
  - Identification of features from generators in LHC energy



# Monte Carlo Simulations



- Understand experimental conditions and performance
- General purpose Monte Carlo (MC):
  - Terms up to Leading Order (LO)
  - Parton Shower (PS) formalism
  - Matrix Element (ME) corrections
  - Generators examples:

HERWIG++ (<u>M. Bahr</u> et al., Eur. Phys. J. C 58:639-707, 2008) SHERPA (T. Gleisberg et al., JHEP 0902:007, 2009) PYTHIA (T. Sjostrand et al., JHEP 0605:026, 2006) ALPGEN (M.L. Mangano et al., JHEP 0307:001, 2003)



### Generators features summary



- Herwig++
  - LO hard process
  - Parton Shower + ME corrections
  - Z production

- Sherpa
  - LO hard process
  - Parton Shower + ME merging (improved CKKW)
  - Z + n jets production
- POWHEG (Herwig++)
  - NLO hard process
  - LO showering (pT ordered)
  - Z production



### **Tevatron data comparisons**



- Choice of generator parameters for best agreement with CDF and D0 data
- Parameters:
  - Multiple Parton Interaction (MPI)
  - Parton Distribution Function (PDF)
  - Intrinsic  $p_T$  of the beams (K\_PERP)



### MPI model - Herwig++





Underlying Event analysis for Herwig + Z NLO



#### MPI model - Sherpa





Underlying Event analysis for SHERPA Z + 3 jets



#### **PDF choice - Sherpa**







#### K\_PERP choice - Sherpa







### LO vs NLO comparisons



#### ME correction on LO - high $p_T$ region NLO - better description of high $p_T$

NLO - better cross section description Z+3 jets LO - better on higher multiplicities





# LHC simulation features



- Analysis cuts:
  - p⊤ (lepton) > 15 GeV;
  - $|\eta (lepton)| < 2.4;$
  - p⊤ (jet) > 20 GeV;
  - **-** |η (jet)| < 4.5;
  - Lepton isolation criteria:  $\Delta R_{ll} > 0.2$ ;  $\Delta R_{lj} > 0.4$ ;
  - Jet algorithm: midpoint, radius R=0.7;
  - Mass cut (photon singularity):  $M_{II} > 15$  GeV.



### LHC simulation features



Differences in transverse momentum of Z  $p_T$  and leading jet  $p_T$ .



#### LHC simulation features



Differences in transverse momentum of Z  $p_T$  and leading jet  $p_T$ .



#### Conclusions



- LO PS+ME describes better the high p⊤ region;
- NLO improves cross section predictions, besides high p<sub>T</sub> region;
- The simulation input parameters influence in the observables;
- Generators show different features in LHC energy, even agreeing in Tevatron energy.
- LHC data needed for further MC tunings.



#### Acknowledgement



- Marie Curie Actions Funding
- Prof. Emily Nurse
- Dr. Gavin Hesketh
- Frank Siegert
- Prof. Frank Krauss
- Prof. Peter Richardson





#### EXTRA SLIDES



#### **Parton Shower**



- Collinear approximation;
- Low transverse momentum (p<sub>T</sub>) description;
- High  $p_T$  distribution not filled.





# **Matrix Element Corrections**



- Improvement of PS description
- Sherpa Improved CKKW merging:
  - Separation of phase space in two regions;
  - Sudakov weighting;
  - Generator automatization of inclusive samples.
- Herwig++ Soft and hard ME corrections:
  - Corrections in low p<sub>T</sub>;
  - ME distribution in high  $p_T$ .



# Next-to-Leading Order methods



- LO for showering, hard process in NLO;
  - Improvement of precision, without NLO showering.
- POWHEG (Positive Weight Hardest Emission Generator):
  - Hard process in NLO;
  - Showering MC for following radiation;
  - POWHEG formula as input parameter to any p<sub>T</sub> ordered showering general purpose MC generator.



Z p<sub>T</sub> features



**Theoretical Corrections** Without Theoretical Corrections Z boson pT Z boson pT  $\widehat{N}^{10^{-1}}$  $1/\sigma d\sigma/dp_{\perp}(Z)$ D0 data )<sup>⊤</sup>dp/op o/10<sup>−2</sup> Herwig++ Z NLO Sherpa Z+3 jets  $10^{-4}$  $10^{-4}$ D0 data  $10^{-5}$ Herwig++ Z NLO  $10^{-5}$ Sherpa Z+3 jets 10-6  $Z \to \mu^+ \mu^ Z \rightarrow e^+ e$  $10^{-6}$  $10^{-7}$ MC/data MC/data 1.4 1.4 1.2 1.2 1 0.8 0.8 0.6 0.6 10<sup>2</sup> 10<sup>1</sup>  $10^{2}$ 101  $p_{\perp}(Z)$  [GeV]  $p_{\perp}(Z)$  [GeV]

Theoretical corrections: undetected final state radiation, full lepton coverage to