Physics with Extra Dimensions Lecture II Warped Extra Dimensions and Strong Dynamics

Gustavo Burdman

Universidade de São Paulo

I SPRACE Physics Analysis Workshop IFT - São Paulo, November 17 2010

Strong Dynamics and AdS/CFT

AdS/CFT Correspondence (Maldacena):

Originally:

$$AdS_5 \times \mathit{S}^5$$
 String Theory $\leftrightarrow \mathcal{N} = 4$ 4D SU(N) Theory (CFT)

- In general: Assume 5D theory in AdS₅ \leftrightarrow 4D SCFT (Arkani-Hamed, Porrati, Randall)
- Need

$$g^2 N \gg 1$$

to ignore string corrections.

⇒ Holographic dual is 4D strongly coupled theory

Strong Dynamics from a Slice of AdS₅

Ingredients to build Strongly Coupled Theories in AdS₅

- UV cutoff in the 4D Theory ↔ UV ("Planck") boundary
- Break 4D Conformal Invariance in the IR ↔ IR boundary
- 4D Strongly Coupled Gauge Theory described by 5D Weakly Coupled Theory

Solving the Hierarchy Problem in AdS₅

Metric in extra dimension \Rightarrow small energy scale from M_P (Randall-Sundrum)

$$ds^2 = e^{-2\kappa|y|} \, \eta^{\mu\nu} dx_\mu dx_\nu - dy^2$$

Corrections to m_h OK If Higgs close to TeV brane

Need Higgs IR localization

Natural EWSB

If the Higgs is localized at (or near) the TeV brane $(y = \pi R)$

$$S_{H} = \int d^{4}x \int_{0}^{\pi R} dy \sqrt{-g} \, \delta(y - \pi R) \left[g_{\mu\nu} \partial^{\mu} H^{\dagger} \partial^{\nu} H - \lambda \left(|H|^{2} - v_{0}^{2} \right)^{2} \right]$$

Even if $v_0 \simeq M_{\rm Planck}$, the v.e.v. (and mass) of the physical Higgs is

$$v = e^{-k\pi R} v_0$$

To solve the hierarchy problem need Higgs localization.

Bulk AdS₅ Models

Allowing Gauge and Matter fields in 5D bulk (Gherghetta-Pomarol, Grossman-Neubert)

- Avoid effects of Higher Dimensional Operators only suppressed by IR/TeV scale
- Natural Models of Flavor:
 Zero-mode fermion localization ↔ fermion mass

$$M_f^{(5D)} = ck, \quad c \simeq O(1)$$

Flavor in Warped Extra Dimensions

• Fermion *bulk mass* ⇒ zero-mode localization:

$$M_f = c k,$$
 $c \sim O(1)$

The zero-mode fermion wave-function is

$$F_{\mathrm{ZM}}^{L}(y) = \frac{1}{\sqrt{2\pi R}} f_{0}^{L}(0) e^{(\frac{1}{2} - c_{L}) ky}$$

• If $c_L > 1/2 \Rightarrow$ fermion localized near y = 0, Planck brane. If $c_L < 1/2 \Rightarrow$ fermion localized near $y = \pi R$, TeV brane.

Fermion Masses in Bulk RS Models

• O(1) flavor breaking in bulk can generate fermion mass hierarchy:

TeV localization \rightarrow larger Yukawas, Planck localization \rightarrow suppressed Yukawas.

- Heavier fermions couple stronger to gauge KK modes:
 - $G^{(1)} \rightarrow t\bar{t}$ dominates
 - Tree-level flavor violation

The Bulk RS Picture

Models of EWSB *and* Flavor

• EWPC: T OK, but $S \simeq N/\pi$ at tree-level

$$M_{KK} \gtrsim (2-3) \text{ TeV}$$

- $Z \to \bar{b}b$ require discrete symmetry ($L \leftrightarrow R$) (Agashe, Contino, Da Rold, Pomarol)
- Potentially important bounds and/or effects from flavor violation

Dynamical Origin of the Higgs Sector

What localizes the Higgs to/near the IR/TeV brane?

- Gauge-Higgs Unification
- Zero-mode Fermion Condensation
- Higgsless

- Gauge field in 5D has scalar A_5
- To extract H from A_5 need to enlarge SM gauge symmetry.

E.g. $SU(3) \rightarrow SU(2) \times U(1)$ by boundary conditions:

$$A_{\mu}: \left(egin{array}{c|c} (+,+) & (+,+) & (-,-) \ \hline (+,+) & (+,+) & (-,-) \ \hline (-,-) & (-,-) & (+,+) \end{array}
ight)$$

$$A_5: \left(egin{array}{c|ccc} (-,-) & (-,-) & (+,+) \\ \hline (-,-) & (-,-) & (+,+) \\ \hline (+,+) & (+,+) & (-,-) \end{array}
ight)$$

 \Rightarrow Higgs doublet from $A_5=A_5^at^a$

To build realistic models of EWSB from AdS₅:

- Isospin symmetry: need $SO(4) \times U(1)_X$ in bulk $\Rightarrow SO(5) \times U(1)_X \rightarrow SO(4) \times U(1)_X$ by BCs (Agashe, Contino, Pomarol)
- Higgs is 4 of SO(4): 4 d.o.f. \leftrightarrow complex $SU(2)_L$ doublet
- Gauge bosons and fermions in complete SO(5) multiplets
- Implementing additional symmetry to protect $Z \to b\bar{b}$ \Rightarrow spectrum of KK fermions, lighter than KK gauge bosons. (Contino, Da Rold, Pomarol)

E.g.: Fermions can be

$$egin{aligned} \mathbf{5}_{2/3} &= (\mathbf{2},\mathbf{2})_{2/3} \oplus (\mathbf{1},\mathbf{1})_{2/3} \ & ext{or} \ &\mathbf{10}_{2/3} &= (\mathbf{2},\mathbf{2})_{2/3} \oplus (\mathbf{1},\mathbf{3})_{2/3} \oplus (\mathbf{3},\mathbf{1})_{2/3} \end{aligned}$$

to satisfy custodial $+ L \leftrightarrow R$ symmetry.

 BCs ⇒ masses of KK fermions tend to be light (because top is heavy)

Signals:

- Rich gauge boson spectrum, at few TeV
- Light KK fermion spectrum: could be as light as 500 GeV
- Very distinctive signals:
 - E.g. b-type KK fermion $\rightarrow tW$ $\Rightarrow 4W's + 2b \text{ signals (Dennis, Servant, Unel, Tseng)}$
 - Enhanced t¹ pair production through KK gluon (Carena, Medina, Panes, Shah, Wagner)

EWSB from Fourth-Generation in AdS₅

```
Top-condensation models (Nambu; Bardeen, Hill, Lindner): EWS broken by \langle \overline{t}t \rangle \neq 0
```

- Top quark is too light: $m_t \sim 600$ GeV if $\Lambda \sim O(1)$ TeV. Or $\Lambda \sim 10^{15}$ GeV if $m_t \sim 200$ GeV.
- \Rightarrow Heavy fourth generation $M_4 \sim 600$ GeV.
- Problems:
 - All of 4th Gen must condense, but What's the underlying interaction?
 - Fermion masses ?

Fermion Condensation

Fourth-Generation Condensation in AdS₅ (G.B. Da Rold)

- Fourth Generation in the AdS₅ bulk
- Choose zero-mode fermions IR localized ⇒ strongly coupled to KK gauge bosons

E.g. KK gluon exchange $\longrightarrow \langle \bar{U}U \rangle \neq 0$

- EWSB
- $m_{IJ}^{(0)} \sim (600 700)$ GeV (ala Bardeen-Hill-Lindner)
- Heavy Higgs: $m_h \simeq (600 900)$ GeV

EWSB from Fourth-Generation in AdS₅

If
$$g_U > g_U^{ ext{crit.}}$$
, $\Rightarrow \langle ar{U}_L U_R
angle
eq 0$

 \Rightarrow Solution to the gap equation:

This implies

- Electroweak Symmetry Breaking
- Dynamical mu

We can also write an effective theory at low energy for the Higgs.

Fermion Condensation (cont.)

• All other fermion masses: Bulk higher dimensional operators

$$\frac{C^{ijk\ell}}{M_P^3} \bar{\Psi}_L^i(x,y) \Psi_R^j(x,y) \bar{\Psi}_R^k(x,y) \Psi_L^\ell(x,y)$$

- Phenomenology dominated by 4th generation
 - ullet $V^{(1)}
 ightarrow ar{U} U$ (broader KK gauge bosons)
 - Flavor physics: E.g. new sources of CPV in mixing, ...
 - Additional contributions to S, T

Higgsless Models

Higgsless RS Bulk Models (Csaki, Grojean, Murayama, Pilo, Terning)

Boundary Condition breaking

$$SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow U(1)_{EM}$$

- IR localized mass terms ⇒ fermion masses
- Kaluza-Klein modes of gauge fields unitarize amplitudes.
 - \Rightarrow KK modes "light": $M_{KK} \lesssim 1 \text{ TeV}$
- Phenomenology in the Gauge boson sector:
 - V_L V_L scattering
 - Sum Rules
- Corresponds to Walking Technicolor Models

Higgsless EWSB in AdS₅

Break EWS by Boundary Conditions (Csaki, Grojean, Pilo, Terning)

- BCs on branes $\Rightarrow SU(2)_L \times SU(2)_R \times U(1)_X \rightarrow U(1)_{\rm EM}$
 - TeV brane: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$: Preserves custodial symmetry.
 - Planck brane: $SU(2)_R \times U(1)_X \rightarrow U(1)_Y$: Allows fermion mass terms on TeV brane.
- ullet Z and W are KK modes. $ho \sim 1$
- Fermion masses:
 - vector-like mass terms on TeV brane.
 - Isospin symmetry broken on Planck brane.
 - E.g.: top quark is TeV-brane localized ⇒ larger mass (larger overlap with chiral-symmetry breaking).

Higgsless EWSB in AdS₅

EWPC:

- 5 parameter is large
- *S* can be made small by de-localizing fermions
- $Z \rightarrow b_L \bar{b}_L$ requires protective symmetry. Still. deviates some from data

Higgsless EWSB in AdS₅

Signals:

- Unitarization of WW, WZ,... scattering done by KK resonances
- Couplings of $V^{(n)}$'s to W^{\pm} and Z must satisfy sum rules (to cancel E^2 , E^4 behavior). E.g. for $WW \to WW$:

$$g_{WWW} = g_{WWZ}^2 + g_{WW\gamma}^2 + \sum_n (g_{WWV^{(n)}})^2$$

$$= \frac{3}{4M_W^2} \left[g_{WWZ}^2 M_Z^2 + \sum_n (g_{WWV^{(n)}})^2 M_n^2 \right]$$

• KK gauge bosons \Rightarrow narrow resonances, lighter ($M_{V^{(1)}}\lesssim 1$ TeV) than in Techni-color or other strongly coupled models.

• TeV Scale could be a window to new strong interactions

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor

- TeV Scale could be a window to new strong interactions
- Weakly coupled theories in AdS₅ map to Strongly Coupled 4D Dynamics
- RS Bulk Models: EWSB and Flavor
- Resonant spectrum \simeq few TeV
- Couplings to KK gauge bosons to fermions reveal flavor theory
- Models and Signals defined by mechanism of Higgs localization, flavor
- If LHC reveals Strongly Coupled TeV scale
 - \Rightarrow Model Building in AdS₅ should be a useful tool

