Physics with Extra Dimensions Lecture I Flat Extra Dimensions

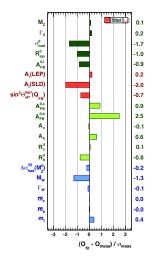
Gustavo Burdman

Universidade de São Paulo

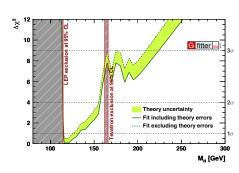
I SPRACE Physics Analysis Workshop IFT - São Paulo, November 17 2010

The great success of the SM

The Standard Model success



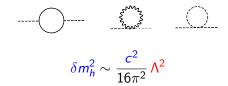
The SM Higgs is light



m_h < 185 GeV @ 95% C.L.

The Stability of the Weak Scale

But if Higgs elementary scalar quantum corrections drive m_h up



- We need $\Rightarrow m_h \lesssim 1 \text{ TeV}$
- But if $\Lambda \to M_P \sim 10^{19} \; GeV$, unnatural

⇒ Gauge Hierarchy Problem

Mechanism to Stabilize the Weak Scale

New physics at $\Lambda \sim 1$ TeV is:

Weakly Coupled

- SM with a light Higgs
- SUSY (MSSM, NMSSM, Folded, ...)
- Little Higgs, Twin Higgs
- LED, UED

Strongly Coupled

- Technicolor, Walking Technicolor
- Topcolor, Top See Saw
- Composite Higgs
- Warped Extra Dimensions

Other reasons to go Beyond the Standard Model

Despite all the sucesses, the Standard Model

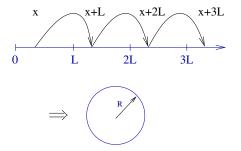
- Does not have a candidate for dark matter
- Does not explain the matter/anti-matter asymmetry
- Does not explain the fermion mass hierarchy
- Does not explain the origin of the Higgs sector nor the stability of the weak scale at $v \simeq 250 \text{ GeV}$

Theories with Extra Dimensions

- May address some of these problems
- Describe some 4D Strongly Coupled Theory

Compact Extra Dimensions

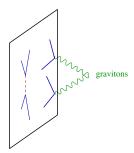
- Extra spatial dimensions with points periodically identified
- 1 Extra Dimension: equivalent to a circle



with $R = L/2\pi$. We identified the points

$$x \sim x + L \sim x + 2L \sim x + 3L \sim \cdots$$

- Assume space has 3 + n dimensions.
- The extra n dimensions are compact and with radius R.
- All particles are <u>confined</u> to a 3-dimensional slice ("brane").
- Gravity propagates in all 3 + n dimensions.



(Arkhani-Hamed, Dimopoulos, Dvali '98)

- Gravity appears weak ($M_P \ll M_W$), because it propagates in large extra dimensions... Its strength is diluted by the volume of the n extra dimensions.
- Fundamental scale is $M_* \sim M_W$, not M_P

$$M_P^2 \sim M_*^{n+2} R^n$$

There is no hierarchy problem:
 The fundamental scale of Gravity

 $M_* \sim 1 {
m TeV}$

If we require $M_* = 1$ TeV:

$$R \sim 2 \cdot 10^{-17} \ 10^{\frac{32}{n}} \text{cm}$$

- $n = 1 \Longrightarrow R = 10^8$ Km. Already excluded!
- $n = 2 \Longrightarrow R \simeq 2$ mm. Barely allowed by current gravity experiments.
- $n > 2 \Longrightarrow R < 10^{-6}$ mm. This is fine.

Large Extra Dimensions - Compactification

When field propagates in one extra dimension

$$P_{M}=P_{\mu}+P_{5}$$

with $\mu = 0, 1, 2, 3$, $M = \mu, 5$.

• But XD is compact $\Rightarrow P_5$ is quantized: periodicity \Rightarrow wavewlength has to be integer number of $2\pi R$.

$$P_5 = \frac{n}{R}$$
, $(n = 0, 1, 2, 3, \cdots)$

Large Extra Dimensions - Compactification

If field has mass M

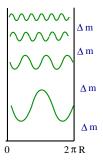
$$P_{M}P^{M} = P_{\mu}P^{\mu} - P_{5}^{2} = P_{\mu}P^{\mu} - \frac{n^{2}}{R^{2}}$$

• From the 4D point of view:

$$P_{\mu}P^{\mu} = M^2 + \frac{n^2}{R^2}$$

• E.g. for a photon (or graviton) M = 0. There is a "n = 0-mode" with zero mass (our photon/graviton), plus infinite excitations with masses n/R.

Compact extra dimensions ⇒ graviton excitations (Kaluza-Klein)



Mass gap $\Delta m \sim 1/R$

E.g. for

$$n = 2 \longrightarrow \Delta m = 10^{-3} \text{ eV}.$$

 $n = 3 \longrightarrow \Delta m = 100 \text{ eV}.$
 \vdots
 $n = 7 \longrightarrow \Delta m = 100 \text{ MeV}.$

Large Extra Dimensions - Phenomenology

- Individual KK graviton couplings gravitationally suppressed $(\sim 1/M_P)$.
- But for $E\gg 1/R \to {\sf sum}$ of KK mode results in

$$\sigma \sim \frac{E^n}{M_*^{n+2}}.$$

Collider Processes:

Individual graviton decay rates $\sim 1/M_P^2$, $\Rightarrow \not\!\! E_T$ signals at colliders.

Bounds on M_* from LEP and Tevatron (1-10) TeV.

(Appelquist, Cheng, Dobrescu '01)

- ullet If some SM fields propagate in the bulk \Rightarrow $1/R \ \gtrsim \ 1$ TeV .
- But if we assume *all* fields can propagate in the extra dimensions. What is the allowed *R*?

For example, a scalar field $\Phi(x, y)$ in one extra dimension:

$$S[\Phi(x,y)] = \frac{1}{2} \int d^4x \, dy \left(\partial_M \Phi \partial^M \Phi - M^2 \Phi^2 \right)$$

Periodic boundary conditions:

$$\Phi(y) = \Phi(y + 2\pi R)$$

Expand in Fourier modes:

$$\Phi(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=0} \left[\phi_n(x) \cos\left(\frac{ny}{R}\right) + \tilde{\phi}_n(x) \sin\left(\frac{ny}{R}\right) \right]$$

• $\phi_n(x)$ and $\tilde{\phi}_n(x)$ are 4D fields.

Integrate over the compact dimension:

$$S_{ ext{4Deff.}}[\phi, ilde{\phi}] = \int_0^{2\pi R} \, dy \, S[\Phi]$$

with

$$\begin{split} S_{\mathrm{4Deff.}} &= \sum_{n=0}^{\infty} \frac{1}{2} \int d^{\mathsf{x}} \left[\partial_{\mu} \phi_{n} \partial^{\mu} \phi_{n} - m_{n}^{2} \phi_{n}^{2} \right] \\ &+ \sum_{n=0}^{\infty} \frac{1}{2} \int d^{\mathsf{x}} \left[\partial_{\mu} \tilde{\phi}_{n} \partial^{\mu} \tilde{\phi}_{n} - m_{n}^{2} \tilde{\phi}_{n}^{2} \right] \end{split}$$

with

$$m_n^2 = M^2 + \frac{n^2}{R^2}$$

- Momentum conservation in the extra dimensions At any vertex, P_M , is conserved. Then 4D-momentum conservation $\Rightarrow P_5$ is conserved.
- E.g.in $(1) + (2) \rightarrow (3)$

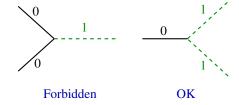
$$p_5^{(1)} + p_5^{(2)} = p_5^{(3)}$$

In terms of KK modes, this reads

$$\pm n_1 \pm n_2 = \pm n_3$$

⇒ KK-number conservation

For instance,



⇒ KK excitations must be pair produced

This leads to

- Bounds on 1/R are lower.
- Distinctive phenomenology

The action for a bulk fermion in 5D:

$$S_{\Psi} = \int d^4x \, dy \, \bar{\Psi}(x,y) \left[i \partial_M \Gamma^M - M \right] \Psi(x,y)$$
$$\int d^4x \, dy \, \bar{\Psi}(x,y) \left[i \partial_\mu \Gamma^\mu - M \right] \Psi(x,y) - \bar{\Psi}(x,y) \gamma_5 \partial_5 \Psi(x,y)$$

Clifford algebra in 5D

$$\{\Gamma_M, \Gamma_N\} = 2\eta_{MN}$$

with
$$\Gamma_{\mu} = \gamma_{\mu}$$
 and $\Gamma_{5} = i\Gamma_{5}$.
 $\Rightarrow \Psi(x, y)$ are 4-component Dirac spinors.

• After "dimensional reduction" (integrating in y):

$$S_{\psi} = \sum_{n=0}^{\infty} \int d^4x \left[\bar{\psi}_n \left(i \partial_{\mu} \gamma^{\mu} - M + i \frac{n}{R} \right) \psi_n \right]$$

• Zero mode (n = 0), is always a vector-like fermion! But in the SM we need chiral fermions!

Chirality: Define

$$\Psi = \Psi_L + \Psi_R$$

And ask properties under $y \rightarrow -y$ reflections ("parity"):

$$\gamma_5 \Psi(-y) = \pm \Psi(y)$$

Given that

$$\gamma_5 \Psi(-y) = -\Psi_L(-y) + \Psi_R(-y)$$

If we have

$$\Psi_R(-y) = \Psi_R(y)$$

$$\Psi_I(-y) = -\Psi_I(y)$$

then $\Psi_L(x, y)$ is odd, $\Psi_R(x, y)$ is even under parity.

• In this case, expanding in KK modes:

$$\Psi(x,y) = \frac{1}{\sqrt{\pi R}} \sum_{n=0} \left[\psi_{nR}(x) \, \cos\left(\frac{ny}{R}\right) + \tilde{\psi}_{nL}(x) \, \sin\left(\frac{ny}{R}\right) \right]$$

- So that the zero mode is *RightHanded*!
- Had we chosen $\gamma_5 \Psi(-y) = -\Psi(y)$, i.e.

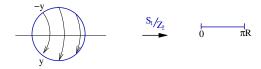
$$\Psi_R(-y) = -\Psi_R(y)$$

$$\Psi_L(-y) = \Psi_L(y)$$

Then the zero mode would be LeftHanded.

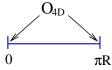
But how do we define "parity" in a circle ?

• Orbifold Compactification: Identify points opposite in the circle $(y \sim -y)$.



- Circle now reduced to segment, with "fixed points" at 0 and πR .
- Fields can be even or odd under $y \rightarrow -y$.
- Bulk fermions have chiral zero modes (either LH or RH).

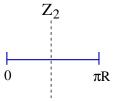
- But Orbifolding breaks KK-number conservation ! Translation invariance broken in the y direction $\Rightarrow p_5$ not conserved !
- The presence of fixed points breaks KK number. By how much?



Localized 4D oprators at y = 0 and $y = \pi R$ generate KK-number-violating interactions. E.g.

$$S_{\text{loc.}} = \int d^4x \int_0^{\pi R} dy \, i \bar{\Psi}(x, y) \gamma_{\mu} D^{\mu} \Psi(x, y) \left(\frac{\delta(y) \frac{c_1}{\Lambda}}{1 + \delta(y - \pi R) \frac{c_2}{\Lambda}} \right)$$

• UV physics might not operate differently in y = 0 and $y = \pi R$.

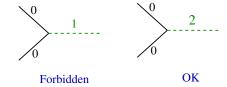


• If $c_1 = c_2 \Rightarrow$ KK-number violating interactions still respect KK-parity. E.g. in $(1) + (2) \leftrightarrow (3)$

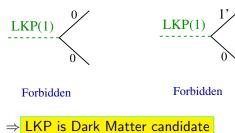
$$(-1)^{n_1+n_2+n_3}=1$$

Conservation of KK parity \Rightarrow

Can produce level 2 KK modes in s-channel.



Lightest KK Particle of level 1 (LKP) is stable



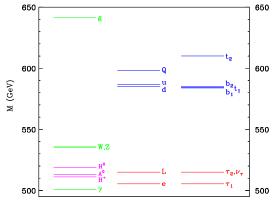
Electroweak precision constraints:

$$1/R \gtrsim 300 \text{ GeV for 5D}$$

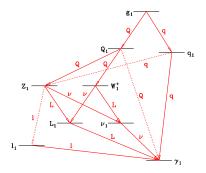
 $1/R \gtrsim (400 - 600) \text{ GeV for 6D}$

• Current direct searches give similar bounds.

- Spectrum at each KK level is degenarate at tree level.
 Localized operators split the masses (one-loop generated).
- First KK mode in 5D model, with c_i's computed at one-loop.

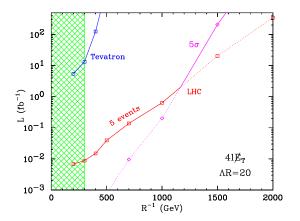


- Light KK modes \Rightarrow large cross sections.
- But, almost degenerate KK levels \Rightarrow little energy release.

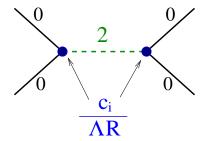


Best mode $qar q o Q_1Q_1 o Z_1Z_1+\not\!\! E_T o 4\ell+\not\!\! E_T$ (Cheng, Matchev, Schmaltz '02).

Reach using this golden mode $q\bar{q} \rightarrow \rightarrow 4\ell + \not\!\! E_T$



- Production and Decay of Second KK Level:
- They couple to 2 zero modes through brane couplings (loop generated). (Datta, Kong, Matchev '05



with $\Lambda R \gg 1$ and $c_i \sim O(1)$.

ullet But has to compete with 2 ightarrow 1 + 1

- Signals very different in 6D (Burdman, Dobrescu, Pontón '06)
- More scalar degrees of freedom: E.g. A_M , with M = 0, 1, 2, 3, 5, 6
- In 5D A₅ not physical. Eaten by KK modes to get their masses (NGB of breaking of translation invariance).
- In 6D one linear combination of A₅ and A₆ is eaten, but one remains in the spectrum
- LKP is a scalar: $B_{5,6}$, extra component of 6D hypercharge gauge boson
- ⇒ Scalar dark matter candidate.

UED Model Building

Some remarks:

- Standard UED models do not solve the hierarchy problem
- Theories with compact extra dimensions can be viewed as (dual to) 4D strongly coupled theories:
 - KK modes ↔ hadron excitation spectrum
 - Inverse of compactification radius $R^{-1} \leftrightarrow$ Excitation gap in strong interaction: Λ (Eg. $\Lambda_{QCD} \simeq 1$ GeV)