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Motivation
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σ =
∫

dx1dx2

∑

subp

fa1/p(x1) fa2/p̄(x2)

1
2ŝ(2π)3n−4

∫
dΦn(x1PA + x2PB ; p1 . . . pn)Θ(cuts)

∑
|M|2(a1a2 → b1 . . . bn)

• Evaluation of cross sections leads to

there are 3n-2 integrals. We also need to simulate the detector!
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• Evaluation of cross sections leads to

there are 3n-2 integrals. We also need to simulate the detector!

• We need effective techniques to perform the calculations!



Shortcomings of traditional numerical methods

• Traditional methods work well for low dimensional integrals:

method/uncertainty 1 dimension d dimensions
Trapedoidal rule 1

n2
1

n2/d

Simpson’s rule 1
n4

1
n4/d

Gauss rule 1
n2m−1

1
n(2m−1)/d

Monte Carlo 1√
n

1√
n



Introduction

• MC is a stochastic technique

• MC provide approximate solutions using statistical sampling 

experiments.

• MC has a wide range of applications from economics to physics

• MC is a statistical method used in simulation of data

• MC uses a sequence of random numbers as data

• MC can be applied to problems with no probabilistic content



Basic idea
• MC is the most efficient way to perform multi-dimensional integrals.
• The simplest idea: integrand is a function of a random variable

x ∈ [0, 1] and 〈f〉 =
∫ 1

0
dxf(x) $ 1

N

N∑

j=1

f(xj)

 x is uniformly distributed [crude MC]

• f(x) is a crude estimator of 〈f〉

• f(x) is a random variable with variance

σ2
1 =

∫ 1

0
dx (f − 〈f〉)2 =⇒ σN =

σ1√
N



• we can estimate the error from the MC simulation

s2 =
1

n − 1

n∑

j=1

(f(xj) − 〈f〉)2



Initial remarks 

1. MC is exact for f constant. The flatter the better!
2. We should avoid near-singular integrands, e.g.,

∫
ds

(s−M)2 + M2Γ2
=

dθ

MΓ
with s−M2 = MΓ tan θ

pxpxpxpxpxpx∫

3. Avoid discontinuities of f if possible.
4. MC is a direct simulation of what happens physically.
5. We can also generate events weighted by f(x)

• we can estimate the error from the MC simulation

s2 =
1

n − 1

n∑

j=1

(f(xj) − 〈f〉)2



Hit-or-miss MC
• Define the function g(x, y) =

{
0 if f(x) < y
1 if f(x) ≥ y

〈f〉 =
1
n

n∑

j=1

g(x2j−1, x2j)• then

a = ymin = 0 and b = ymax = 1



Stratified sampling
• just break the range of integration

0 = α0 < α1 · · · < αk = 1

• apply crude MC to each interval

〈f〉 #
k∑

j=1

(αj − αj−1)
1
nj

nj∑

i=1

f(αj−1 + (αj − αj−1) xij)

• variance is reduce for same number of calls of f. 



Importance sampling

• use more points where the 
function is larger

• implementation using pdf’s:

〈f〉 =
∫ 1

0
dx f(x) =

∫ 1

0
dx g(x)

f(x)
g(x)

=
∫ 1

0
dG

f(x)
g(x)

where  G(x) =
∫ x

0
dy g(y)

• choosing g(x) we can reduce the variance.



• the variance is σ2
f/g =

∫ 1

0
dG

(
f(x)
g(x)

− 〈f〉
)2

• g should be simple to obtain G explicitly
• if g=cf  the variance vanishes
• choose a good function g similar to f



Particle Physics 
Applications

• Let’s return to the cross section evaluation
pxpxpxpxpxpx
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∫

dx1dx2

∑
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dΦn(x1PA + x2PB ; p1 . . . pn)Θ(cuts)

∑
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that requires a suitable choice of the integration variables



• Initially we map the integration region into a 3n-2 hypercube

dx1dx2dΦn = J
3n−2∏

i=1

dri

• It is easy to reconstruct the momenta and implement the cuts

• This procedure generate weighted events with weight

w =
∑

{ri}

J
2ŝ(2π)3n−4

∑

subprocesses

f(x1)f(x2)
∑
|M|2 Θ(cuts) ,

• Now it is possible to generate distributions

• Unweighted events can also be obtained



Phase space

dΦn(ab→ 1 . . . n) ≡ δ4(pa + pb − p1 − · · ·− pn)
n∏

i=1

d3"pi

2Ei

• The sum over the final states leads to

• this contains 3n-4 integrals
• Variables must be chosen to allow the improve the efficiency of MC
• we must have a feeling of the important contributions to the 
process



Two-body final state

dΦ2 ≡ δ4 (P − p1 − p2)
d3"p1

2E1

d3"p2

2E2

=
1
4

|"pcm
1 |√
s

dΩ1 =
1
4

|"pcm
1 |√
s

d cos θ1dφ1

=
1
4

dt dφ1

s λ1/2 (1,m2
a/s,m2

b/s)

λ(x, y, z) = (x− y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yzwith

• this is the simplest possibility



Multiparticle Phase Space
Diagrams by MadGraph  u u~ -> mu+ mu- g  
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• Choice of variables decided by 
physics
• e.g., m34 in this example

• a possible starting point is the 
relation: X=1+...j and Y=(j+1)+...+n

dΦn(ab→ 1 . . . n) = dΦ2(ab→ XY ) × dM2
X dM2

Y × dΦj(X → 1 . . . j) ×
dΦn−j(Y → j + 1 . . . n)



• it is possible to generate “generic” phase spaces

s-channel t-channel

or more customized choices



Evaluation of scattering amplitudes

• We need to evaluate
∑
|M|2(a1a2 → b1 . . . bn) with M =

f∑

i=1

Mi

• In the trace technique we evaluate f(f+1)/2 terms like Re(M∗
iMj)

• Hard task for large f.  
• Alternative evaluate numerically helicity amplitudes

|M|2 =
∑

λa...λn

|M(λa . . .λn)|2

• MC gives a set of momenta from which we evaluate the matrix 
elements since they are just operations with matrices!



• Choose, for example, the representation

for γ5 =
(
−1 0

0 1

)
we write ψ =

(
ψ−
ψ+

)
.

• the u spinors are given by u(p, σ)± =
√

(p0 ± σ|p|) χσ(p)

χ+(p) =
1√

2|p|(|p| + pz)

(
|p| + pz

px + ipy

)
; χ−(p) =

1√
2|p|(|p| + pz)

(
−px + ipy

|p| + pz

)
.

• we can go on and define all elements in a Feynman diagram

• there are packages that do that for you, e.g., HELAS
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Madevent/Madgraph
• There are packages to evaluate the hard scattering part:  

MadGraph/MadEvent (ME),  ALPGEN, CompHEP/CalcHEP,  

SHERPA, etc

• ME provides (automatically) complete partonic events:

1. Feynman diagrams;
2. Matrix element amplitudes;
3. Phase space integration;
4. Complete event simulation: MadEvent -> PYTHIA -> PGS
5. Merging with parton showers in PYTHIA
6. Available in the web





Phase space in MadEvent
• ME  has a smart trick for the phase space

|M |2 =
N∑

j=1

|Mj |2∑
k |Mk|2 |M1 + · · · + MN |2

• Each element of the sum is dominated by a set of momenum 
configuration, so it chooses a different phase space for each j.

slows down the calculation for large number of Feynman diagrams

optimizes integration variables



Beyond parton level processes
• Events in the LHA format passed for parton shower and 
hadronization by PYTHIA

Text
PS = approximation

hadronization = model

Fabio Maltoni



Parton shower basics

• matrix elements in g => q q g enhanced for g colinear to q 

1
(pq + pg)2

! 1
2EgEq(1− cos θgq)

there are soft and collinear divergences

dominant contribution to process

• Collinear factorization:

|MN+1|2dΦN+1 ! |MN |2dΦN
dt

t

Cαs

2π
P (z)dz

• Parton shower resums leanding log contributions



Comments
• MC permeates all parts of simulation in HEP: hard 
scattering, parton shower, initial state radiation, 
hadronization...
• MC makes simples simulate cuts, build distributions
• Efficiency of the MC depends on the choice of variables

• MC also present in detector simulation

• Present hard scattering generators allows us to go 
beyond PS approximations. This is important!



from Johan Alwall


