Monte Carlo Method

Oscar Eboli
| SPRACE Physics Analysis VWWorkshop
Nov. 17,2010



Motivation

e Evaluation of cross sections leads to
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there are 3n-2 integrals.We also need to simulate the detector!
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there are 3n-2 integrals.We also need to simulate the detector!

* We need effective techniques to perform the calculations!



Shortcomings of traditional numerical methods

* Traditional methods work well for low dimensional integrals:

method /uncertainty | 1 dimension | d dimensions
Trapedoidal rule # n21/d
Simpson’s rule = n41/d
(Gauss rule n%];_l n(2m1_1>/d
Monte Carlo \/Lﬁ \/Lﬁ




Introduction

* MC is a stochastic technique

* MC provide approximate solutions using statistical sampling
experiments.

* MC has a wide range of applications from economics to physics
* MC is a statistical method used in simulation of data

* MC uses a sequence of random numbers as data

* MC can be applied to problems with no probabilistic content



Basic idea

* MC is the most efficient way to perform multi-dimensional integrals.
* The simplest idea: integrand is a function of a random variable

0] ad ()= [ defl@) = 5> fa)
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x is uniformly distributed [crude MC]

* f(x) is a crude estimator of (f)

* f(x) is a random variable with variance

= [ A = on=



e we can estimate the error from the MC simulation




e we can estimate the error from the MC simulation
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Initial remarks

|. MC is exact for f constant. The flatter the better!
2. We should avoid near-singular integrands, e.g.,

d do
/( M)28—|— V22— T with s — M?* = MT tan¥
S —_—

3.Avoid discontinuities of f if possible.
4. MC is a direct simulation of what happens physically.
5.We can also generate events weighted by f(x)



Hit-or-miss MC

0 if f(x) <y

e Define the function g¢g(x,¥y) = { 1 if f(x) >y

1 n
o then (f) = - E g(w25—1, x2;5)
j=1

a=ymin =0and b = ymaxr =1



Stratified sampling

* just break the range of integration

O=ap<a1---<ap=1

* apply crude MC to each interval

¢ variance is reduce for same number of calls of f.



Importance sampling

* use more points where the
function is larger

* implementation using pdf’s:

<f>=/01d:v f(af)=/01dw 9(z)

where G(x) = /O*’E dy g9(y)

* choosing g(x) we can reduce the variance.



1
o . . 2 N
the variance is af/g—/o dG (

* g should be simple to obtain G explicitly
e if g=cf the variance vanishes
* choose a good function g similar to f



Particle Physics
Applications

e Let’s return to the cross section evaluation
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that requires a suitable choice of the integration variables



* |nitially we map the integration region into a 3n-2 hypercube

3n—2
dxldiljgdq)n = J H d?“i

i=1
* |t is easy to reconstruct the momenta and implement the cuts

* This procedure generate weighted events with weight

W = Z 28(27)3n 4 Z f(xl)f(xz)i\/\/l\z O (cuts) ,

{r;} subprocesses

* Now it is possible to generate distributions

* Unweighted events can also be obtained



Phase space

e The sum over the final states leads to

n dg_»
d®,(ab—1...n) 554(1% +Ppb—P1— " — DPn) H

® this contains 3n-4 integrals

* Variables must be chosen to allow the improve the efficiency of MC
* we must have a feeling of the important contributions to the
process




Two-body final state
* this is the simplest possibility

d’p1 d°ph
2F,7 2F5
L [pi™|
df)y =
1= NE

ddo 0* (P —p1 — p2)

L py™|
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1 dt do,
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d cos 01dpq

with A(z,y,z2) = (:C—y—z)Q—4yz::132+y2+22—2:1:y—2mz—2yz



Multiparticle Phase Space

* Choice of variables decided by
physics
* e.g.,m34 in this example

* a possible starting point is the
relation: X=1+...j and Y=(j+|)+...+n

dP,(ab—1...n)=  d®y(ab — XY) x dM% dMy x d®;(X —1...5) X



* it is possible to generate “generic” phase spaces

Pi+1

s-channel




Evaluation of scattering amplitudes

f
* We need to evaluate \M\2(a1a2 — by ...b,) with M = Z/\/l@
i=1

* In the trace technique we evaluate f(f+1)/2 terms like Re(M; M)

* Hard task for large f.
e Alternative evaluate numerically helicity amplitudes

MPP= D IMAa- AP

Ag---An

e MC gives a set of momenta from which we evaluate the matrix
elements since they are just operations with matrices!



* Choose, for example, the representation

for%:( _é (1)) we write zp:(zi; >

e the u spinors are given by u(p, o)+ = VvV (P £ alpl) xo(p)

B 1 pl+p. ) _ ! ~Pa 1Py
o+ () V2Ip|([p| + p-) ( Pe + 1Dy ) R V2[p[([p] + p-) ( pl+p- ) |

* we can go on and define all elements in a Feynman diagram

* there are packages that do that for you, e.g., HELAS



* Choose, for example, the representation

(4 4) e = ()

_ 1 p| + p-
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* we can go on and define all el

* there are packages that do thz




Madevent/Madgraph

* There are packages to evaluate the hard scattering part:
MadGraph/MadEvent (ME), ALPGEN, CompHEP/CalcHEP,

SHERPA, etc

* ME provides (automatically) complete partonic events:

|. Feynman diagrames;

2. Matrix element amplitudes;

3. Phase space integration;

4. Complete event simulation: MadEvent -> PYTHIA -> PGS
5. Merging with parton showers in PYTHIA

6. Available in the web



MadGraph/MadEvent v4 Flow
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Phase space in MadEvent

* ME has a smart trick for the phase space

* Each element of the sum is dominated by a set of momenum
configuration, so it chooses a different phase space for each j.

slows down the calculation for large number of Feynman diagrams



Beyond parton level processes

* Events in the LHA format passed for parton shower and
hadronization by PYTHIA

PS = approximation

hadronization = model

Fabio Maltoni



Parton shower basics

e matrix elements in g => enhanced for g colinear to
g qq8 g q

1 1
(Pq ""pg)2 B 2EgEq(l — CO5 ng)

there are soft and collinear divergences

dominant contribution to process

e Collinear factorization:

dt Cog
My 1 [PdPn 1 = [My[Pddy— ——

P(z)dz

* Parton shower resums leanding log contributions



Comments

* MC permeates all parts of simulation in HEP: hard
scattering, parton shower, initial state radiation,
hadronization...

* MC makes simples simulate cuts, build distributions

* Efficiency of the MC depends on the choice of variables

* MC also present in detector simulation
* Present hard scattering generators allows us to go
beyond PS approximations. This is important!
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