
Chapitre 1

Introduction to probability

1 Random experiment

An experiment is said to be random if we could not predict its result in
advance. A result of such experiment can be considered as un element ω of
a set including all possible results. This set is called the sample space Ω.

The nature of the elements of Ω is not unique. It depends on the usage
we make of the results of the experiment :
Example : 2-die game In the the 2-die game the set Ω can be that of the
the different possible couples :

{(1, 1), (1, 2) · · · · · · (6, 6)}

or that of the sum of the two dies :

{(2), (3) · · · · · · (12)}

Event :
An event is a logical proposition related to the result of on experiment

Example : Sum of the 2 dies > 7

⇒ {(4, 4), (4, 5), (5, 5), (4, 6), (5, 6), (6, 6)}

Kolmogorov probability

A probability is an application P from the set of events of Ω into [0,1]
such that :

– P (Ω) = 1
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– for all sets of incompatibles events :

A1, A2, An, on a P (UiAi) =
∑
i

P (Ai)

Proprieties

– P (φ) = 0 and P (Ā) = 1− P (A)
– P (A) ≤ P (B) if A ⊆ B
– P (AUB) = P (A) + P (B)− P (A ∩B)
– P (UiAi) ≤

∑
i
P (Ai)

– if {Bi} forms a complet system of events then :

∀A : P (A) =
∑
i

P (A ∩Bi)

Conditional Probability

P (A/B) : probability to have A if B is known/realized

P (A/B) =
P (A ∩B)

P (B)

Conditional probability satisfies the probability definition requirements :

– P (Ω/B) = 1
– P (UiAi/B) =

∑
i
P (Ai/B)

Independance of events :

A et B are independant if

P (A/B) = P (A)⇒ P (A ∩B)

P (B)
= P (A)

⇒ P (A ∩B) = P (A) P (B)

Bayes formulae

P (A/B) = P (B/A)P (A)
P (B)

P (A ∩B) = P (A/B)P (B) = P (B/A)P (A)
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P (A) =
∑
i
P (A ∩Bi) {Bi} système complet

=
∑
i
P (A/Bi)P (Bi)

⇒

P (Bi/A) =
P (A/Bi)P (Bi)∑

k
P (A/Bk) P (Bk)

Example : The physics department of our University has bought 100 PC of
3 different marks. Each has a known failure rate C

mark nombre ε

m1 30 2%

m2 50 2%

m3 20 3%

The PC attributed to prof. X was found corrupt. Can prof. X infer what is
the mark of his PC ?

P (m1/corrupt) =
2

100
× 30

100
2

100
× 30

100
+ 2

100
× 50

100
+ 3

100
× 20

100

= 6
22

P (m2/corrupt) = 10
22

P (m3/corrupt) = 6
22

Knowing the failure rate (prior) of the different marks and the number of
PCs of each mark Bayes formulae allow one to estimate the probability (pos-
terior)of one corrupt PC to belong to one mark.

If the companies do not provide the failure rates what one can do ? We will
see later how one can proceed.
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Probability notions

Theoritical Concept
If one has a finite set of events and symmetry such that each elementary
event has the same probability then

⇒ Probabilty is a counting business

P (A) =
nb of favorable cases
nb all possibe cases

However perfect symmetries are rare and sets are not always finite. Bertrand
paradox is an illustration of this :
Bertrand paradox

Let’s take a circle of radius r and draw an equilateral triangle inside it. Now
let’s estimate the probability of any segment to be longer than the side of
the triangle ?

Practical concepts :
Two notions of probability are used by physicists in practice ; one is called
the objective vision and the other is called the subjective one

The objective vision or the frequentist :
this notion is based on the large numbers law. If one repeats a large number
of times the same experiment, the appearance frequency of one kind of events
defines the associated probability.
Critics :

– This vision could not "probabilize" the rare events. Example : What is
the probability that it will snow in the Nevada desert on the 13th of
August 2020 ?

– The frequentist notion is based on the law of large number which is
valid only if a notion of probability exists already ! ! ! !

The subjective vision or the Bayesian one :
Since the frequentist notion is limited in its application, the subjective one
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tries to enlarge its scope by using Bayes theorem :

P (A/B) =
Pr(B/A) P (A)

P (B)

So if one has recorded the weather in Nevada during longtime and more
particularly on the 13th of August of each year one may be able to predict
the probablity to snow in the Nevada desert on the 13th of August 2020.
The probability of an event is subject to the information we acquire. Our
knowledge (and hence our uncertainty) evolves with time.
Critics :

The Bayesian probability depends on an arbitrary choice of the prior ( the
failure rate in our PCs example) which is generally unkown in most of our
physics application. So this probability is dependant on the observer choice.
So what to choose ? This is the big question....
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Random variable (X)

This is an application from a set Ω to which a probability law P is defined
to an another set E. The application allows to link each element of E to one
or more events of Ω. This allow indeed to a transfer of the probability law
defined on Ω to E.
Example : The 2-die game (application : sum of the two dies)

Ω = {(1, 1), (1, 2) · · · (6, 6)} with the probability P defined as

P (ω) =
1

36
∀ω ∈ Ω

E = {2, 3 12} sum of the two dies.
For the element s = 7 ∈ E we can associate the probablity :

PX(s = 7) = P (1, 6), (2, 5), (3, 4), (6, 1), (5, 2), (4, 3) =
6

36

The application allowed to transport the probability defined on Ω to E
P → PX
If E ≡ R the random variable is called a real random variable.

PX(A)A∈R = P (ω/X(ω) ∈ A) = P (X−1(A))

The probability density function (p.d.f)

If X is a discreet variable ⇒ we talk about Probability

If X is a continuous one ⇒ P (X = x) = 0

⇒ in this case we introduce on the notion of the probability density

P (xmin < x < xmax) =
∫ xmax

xmin
f(x)dx

The distribution function (d.f)

F (x) = P (X < x)

F is a montonous left-continous function.
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if X is a continous variable ⇒

F (x) =

x∫
xmin

f(x′)dx′

F (xmin) = 0 , F (xmax) = 1

f(x) =
∂F (x)

∂x

F is as important as f (if not more).

Important Application

Let’s consider the following case : x is a real variable and φ(x) is a derivable
function of x.
if f, F are respectively the probability density function (p.d.f) and the dis-
tribution function (d.f) associated to x, then what are the p.d.f and the d.f
associated to φ called respectively (g,G) ?

Answer :
• Case of a bijective φ

In this case φ is monotonous.
1- φ is an increasing function → φ′ > o

F (x) = G(φ(x)) since P (X < x) = P (φ(X) < φ(x))

f(x) = g(y) φ′(x)⇒ g(y) = f(x)
φ′(x)

; y = φ(x)

2- φ is a decreasing function→ φ′ < o

F (x) = 1−G(φ(x)) since P (X < x) = P (φ(X) > φ(x))

f(x) = −g(y) φ′(x)⇒ g(y) = f(x)
−φ′(x)

; g = φ(x)

For both cases one may write :

g(y) =
f(x)

|φ′(x)|
• General case
If φ is not bijective then we divide the definition domain into intervals on
which the function is either increasing or decreasing and then we apply the
previous recipe.
exercice : Find the disribution function associated to : φ(x) = x2
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Moments
The moments play an important role in the statistics. they allow to charac-

terize our sample. They are defined by :

E[xm] =
∫ +∞

−∞
xmf(x) dx = µm

The expectation value :
This is a moment of the first order (m = 1) :

m = 1⇒ E(x) = µ =

+∞∫
−∞

xf(x)dx

Central moments

These are moments centered around the mean value µ

E[(x− µ)m] =

+∞∫
−∞

(x− µ)mf(x)dx

The variance :
This is a central moment of the second ordre (m = 2) :

m = 2⇒ V = σ2 =

+∞∫
−∞

(x− µ)2f(x)dx

In addition to the expectation value and the variance, two other moments
can be sometimes of interest :

γ1 =
E[(x− µ)3]

σ3

Called the asymmetry coefficient (skewness). The other is :

γ2 =
E[(x− µ)4]

σ4

Called flatness coefficient (kurtosis). Skewness expresses the deformation of

a pdf with respect to a gaussian γ1 > 0(< 0) deformation to the right (left).
The kurtosis expresses the flatness of a pdf with respect to a gaussian γ2 >
3(< 3) sharp (broad) than a gaussian
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Characteristic function :
This is the inverse Fourier Transform of the pdf :

φ(t) = E[eitx] =
+∞∫
−∞

e+itxf(x)dx

or
(

+∞∑
k=−∞

eitxk f(xk) discreet case
)

f(x) =
1

2π

+∞∫
−∞

e−itxφ(t)dt

TF ←→ TF−1

φ(t) = E
[ ∞∑
k=0

(itx)k

k!

]

=
∞∑
k=0

(it)k

K!
E[xk]

E[xk] = 1
ik

dkφ(t)
dtk
|t=0

Discreet case : the characteristic function is called generator function in
this case and commonly noted : G(z).

Application :

We can use the proprieties of the characteristic function in order to find the
pdf of the the sum of two real variables f(x+ y) :
We define w = x+ y ⇒ φ(t) = E[eiwt] = E(eitxeity)
if x, y independant ⇒ E(eiwt) = E(eixt)E(eiyt) ⇒ φw(t) = φx(t) φy(t)

now once φw(t)is foundf(x+ y)can be determined by taking TF−1of φ.

Case of multiple random real variables
Let’s consider the case of two random real variables x, y to start with. The
couple (x, y) is an application from (Ω) in R2.

The adjoint density function :
f(x, y) is defined in the following manner :

P (x < X < x+ dx, y < Y < y + dy) = f(x, y) dx dy
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The marginal density function :

If one is interested by the behaviour of only one of the two variables, the

marginal density function can be use. It is obtained by integrating on all the
values of the second variable :

f1(x) =
∫
f(x, y) dy

f2(y) =
∫
f(x, y) dx

The conditional density function :
This it the density probability function associated to one variable when the
other is known/fixed. It is given by :

fc(y/x) =
f(x, y)

f1(x)

Correlation :
One of the most important aspects when analyzing data is to have a good
understanding of the different variables describing those data. The corre-
lation provide as much information as the variables themselves and should
be thus quantified correctly. To do this we introduce the notion of covariance :

The covariance :
The covariance of 2 variables x, y is defined by :

COV (x, y) = E[(x− µx)(y − µy)]
= E[xy]− µxµy

with

µx =
+∞∫
−∞

+∞∫
−∞

xf(x, y) dx dy

µy =
+∞∫
−∞

+∞∫
−∞

y(f(x, y) dx dy

The correlation coefficient :
From the covariance we can introduce the correlation coefficient :

ρxy =
COV (x, y)

σxσy
− 1 ≤ ρxy ≤ 1

Independance of 2 random variables
The correlation notion is different from the independence one. One can ea-
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sily show that the independence of two variables leads to the absence of
correlation between them. The opposite is not true. Indeed the absence of
correlation does not imply their independence :

x, y independent ⇒ ρxy = 0

ρxy = 0 6⇒ x, y independent

Indeed,if x, y are independant we have f(x, y) = f(x)f(y) which leads to :
COV (X, Y ) =

∫
(x − µx)

∫
(y − µy)f(x, y)dxdy =

∫
(x − µx)f(x)

∫
(y −

µy)f(y)dy = 0
The covariance may vanish even if f(x, y) 6= f(x)f(y). This occurs when the
variation of one of the two variables does not affect the expectation value of
the other.

Remark : If the two variables x, y are correlated (COV (x, y) 6= 0) one can
always perform a change of variable which results in two new uncorrelated
variables.

X, Y ⇒ x′, y′ such that COV (x′, y′) = 0

x′ = x′(x, y), y′ = y′(x, y)⇒ g(x′, y′) = f(x, y)J

where we introduced the Jacobian J

J =
∂x
∂x′

∂y
∂x′

∂x
∂y′

∂y
∂y′

Remarks :
1- The variable change in case of a discreet variable is not accompanied by a
Jacobian multiplication.

2- Idem in case of a parameter change.

Generalization to the case of many variables

x =


x1

x2

xn

 xT = (x1, x2, · · ·xn)
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F (x) =
x1∫
−∞

x2∫
−∞
· · ·

xn∫
−∞

f(x) dx, dx = dx1 x2 · · · dxn

f(x) = ∂n

∂x1,∂x2···∂xnF (x)

µ`1,`2···`n = E(x`11 , x
`2
2 , · · ·x`nn )

µ =


µ1
...
µn



V = E
[
(x− µ)(x− µ)T

]
=


σ11 σ12 · · · σ1n

σ21 σ22 σ2n
...
σn1 σnn


σij = ρij σi σj

V is a symmetric matrix ⇒ diagonalisable.

⇒ ∃ U such that g = U x avec V (g) = diag.

12



Chapitre 2

Probability distributions

When analyzing data collected from experiments, we try to understand
the behavior of some or all of the physical quantities which can characterize
the events we are interested in. Usually we try to compare the distribution
of those physical quantities to some "appropriate" distributions we use as a
reference. Agreement or deviation with respect to those references play an
important role to understand our data.

In high energy and nuclear physics the distributions we may meet are
numerous. Here after some which are frequently used :

Bernouli

This is the simplest of the known distributions. It gives the probability
of the discreet variable X = k which can take only two discreet values 1 or
0 with the probability p to have the value 1 :

f(k, p) = pk(1− p)1−k

E[k] = p
V [k] = p(1− p)

Binomial distribution

It describes the probability of having X = k favorable trials among n
ones. with p being the probability of success for each trial :

f(n, k, p) = B(k;n; p) = Ck
np

k(1− p)n−k
E[k] = np
V [k] = np(1− p)
φ(t) = (peit + 1− p)n
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Exercice
Show that the sum of two independent variables x, y distributed respectively
according to : B(kx;nx, p) and B(ky, ny, p) is a new variable distributed like
B(kx + ky, nx + ny, p).

Multinomial distribution

This is a generalization of the binomial distribution with m possible re-
sults( 2 in the binomial). The following table illustrates the possible configu-
rations of such distribution :

result nb prob.

1 k1 p1

2 k2 p2

. . . . . . . . .
m km pm

with
∑
n
pm = 1,

∑
m
km = n and the probability associated to one configu-

ration is given by :

f(k1, k2, · · · km, p1, p2 · · · pm, n) =
n!

k1!k2! · · · km!
pk11 p

k2
2 · · · pkmm

E[ki] = npi

V [ki] = npi(1− pi)

COV(ki, kj) = −npipj i 6= j

φ(t2, t3 · · · tm) = (P1 + P2e
it2 + · · ·Pmeitm)n

Application :
1)The decay of one particle in different modes ;
2)The bins of a histogram.

Poisson distribution

This is one of the most frequent distributions. It is a discreet one. This
distribution can be used to describe a phenomenon if it satisfies the following
conditions :
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– The number of success (called events) is known but not the number of
trials ;

– The number of success in a given interval depends only on the length
of this interval ( there is a constant rate of events/unit of interval..) ;

– The occurrence of an event could not alter the occurrence of another
event (uncorrelated events) ;

– 2 events could not occur at the same time (too scarce to have a coinci-
dence of two events).

Those conditions allow us to derive the Poisson probability distribution star-
ting from the binomial one.
Let ∆x be an interval in which one event at most can take place. Let λ be
the probability to have one event in n∆X ⇒ the probability to have 1 event
in ∆X will be (second condition) p = λ

n

Now let’s estimate the probability to have k events in n� k intervals (n∆x).
It is easy to understand that this can be estimated using the binomial dis-
tribution with k success and n tries with the probability associated to one
success given by : p = λ

n
:

P (k, p) =
n!

(n− k)!k!
pk(1− p)n−k

or

k � n (rare events) ⇒ n!

(n− k)!
' nk

p =
λ

n
⇒
(

1− λ

n

)n−k
= e−λ

→ f(k, λ) =
λk

k!
e−λ

E[k] = λ
V [k] = λ

γ1 = λ−
1
2

γ2 = λ−1 + 3
φ(t) = exp(λ(eit − 1))

Exercice :
Show that the sum of two random variables x, y each of them with a Poisson
distribution is also a variable with a variable de Poisson according to the
following scheme :
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X → λKxx
Kx!

e−iλx

Y → λ
Ky
y

Ky !
e−λy

X + Y → (λx+λy)k

K!
e−(λx+λy)

Application :

1) Nuclear decay (big number of nuclei) ;
2) Interaction of an intense beam with a thin target

Uniform distribution This is the simplist continuous distribution :

f(x; a, b) = 1
b−a x ∈ [a, b]

f(x; a, b) = 0 else

E[x] = b+a
2

V [x] = (b−a)2

12

Application :
1) The round-up of a number ;
2) The coordinate of a particle impact in a pixel.

Normal distribution (De Moivre, Laplace, Gauss)
This is the most known and used distribution. We will see very soon why

this distribution plays such an important role

N(x;µ, σ2) =
1√

2πσ2
e−

(x−µ)2

2σ2

E[x] = µ
V [x] = σ2

By introducing the following variable change :

x→ z =
x− µ
σ

We obtain the so-called standard normal distribution which has zero as a
mean value and a variance equals to 1 : N(x;µ, σ)→ N(z; 0, 1). The charac-
teristic function is given by :
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φ(t) = e−
t2

2

Normal distribution with n variables

x→ x =


x1
...
xn

 µ→


µ1
...
µn


− (x− µ)2

2σ2
→ −1

2
(x− µ)T A(x− µ)

To determine the matrix A we use the fact that E [x − µ] = 0∫
(x− µ) e−

1
2

(x−µ)TA(x−µ) dx = 0

We then differentiate with respect to µ

⇒ E[(x− µ) (x− µ)T ]A = 1

( covariance matrix) ← V A = 1⇒ A = V −1

N(x;µ;V ) =
1

(2π)n/2|V |1/2
exp

[
−1

2
(x− µ)T V −1(x− µ)

]
where |V | is the determinant of V

Application : Normale distribution with a 2 dimensions (x, y)

V =

 σ2
x ρσxσy

ρσxσy σ2
y

 COV(x, y) = ρσxσy

V −1 =
1

σ2
xσ

2
y(1− ρ2)

 σ2
y −ρσxσy

−ρσxσy σ2
x


The p.d.f is given by : f(x, y) = 1

2πσxσy
√

1−ρ2
e−

1
2G

G =
1

1− ρ2

[
(x− µx)2

σ2
x

− 2ρ(x− µx)(y − µy)
σxσy

+
(y − µy)2

σ2
y

]
Remark : The contours of the pdf related to a given density of this distribu-
tion in the plan (x, y) can be obtained by fixing the value G. Those contours
are ellipses. ρ Cauchy distribution
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C(x, µ, α) =
1

πα

1

1 + (x− µ)2/α2

Cette distribution is well known in nuclear and high energy physics ( up
to a multiplicative constant) under the name Breit-Wigner which is used to
describe resonances.

f(m;M,Γ) =
1

2π

Γ

(m−M)2 + Γ2

4

Remark : All the moments related to this distribution ( E[x], · · · ) are
divergent. In practice the distribution is truncated between −L et +L with
L� α.

Gamma distribution

For phenomena for which events fulfill the Poisson distribution and for
which the probability to have an event per unit of interval is µ = λ/t, the
probability to have the event number k taking place at t starting from zero
can be estimated from the following :

F (t) = P (Tk ≤ t) = 1− P (Tk > t)

where Tk is the occurrence time of the event number k.

P (T > t) ≡ (Prob. of number of decays < k)

=
k−1∑
m=0

(λt)m e−λt

m!

=

∞∫
λt

zk−1e−z

(k − 1)!
dz

⇒ F (t) = 1−
∞∫
λt

zk−1

(k − 1)!
e−z dz =

∫ t

0

λkyk−1

Γ(k)
e−λy dy ; y =

z

λ

f(t; k;λ) =
dF

dt
=
λktk−1e−λt

Γ(k)
; t > 0

This distribution is called the Gamma distribution.

E[t] = k
λ

V [t] = k
λ2

φ(x) = 1
(1− ix

λ
)k
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Remarks :
1- In the case of k = 1 the distribution is called the exponential distribution
f(t) = λe−λt ;
2- If λ = 1

2
and k = n

2
⇒ f

(
t; n

2
, 1

2

)
≡ χ2(t;n)

χ2 distribution

If x1, x2, x3 · · · xn,are n independent variables normally distributed then we
can define a new variable :

χ2(n) =
n∑
i=1

(xi − µi)2

σ2
i

where µi, σ2
i are the mean value and the associated variances of xi.

Case of n=1 : χ2(1)

χ2 =
(
x−µ2
σ2

)
= z2

we define Q = χ2 = z2

The p.d.f associated to z (normally distributed) is given by :

f(z) =
1√
2π
e−

z2

2

From this we can deduce the one associated to Q.

P (Q < q) = P (−√q < z <
√
q)

G(q) = F (
√
q)− F (−√q)

g(q) =
f(
√
q)

2
√
q

+
f(−√q)

2
√
q

g(Q) = f(
√
Q)

2
√
Q

+ f(−
√
Q)

2
√
Q

g(Q) =
1√
2πQ

e−
Q
2 =

1√
2πχ2

e−
χ2

2

Unfortunately we use the same name χ2 for the p.d.f and the variable itself :

χ2(n = 1) =
1√

2πχ2
e−

χ2

2
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The previous result can be generalized to the case of n variables :

χ2(n)→ g(χ2, n) =
(χ2)

n
2
−1

Γ(n
2
)2n/2

e−
χ2

2

E[χ2(n)] = n
V [χ2(n)] = 2n

φ(t) = (1− 2it)−n/2

Remarks :
1-The sum of two variables distributed according to χ2(n1) and χ2(n2) res-
pectively is a χ2(n1 + n2) distributed.
2- The asymptotic limit of χ2(n) for large n is N(n, 2n).

Student distribution

The p.d.f associated to the variable t = z√
χ2(n)
n

is the student distribution

if z is distributed normally. The p.d.f is shown to be

f(t, n) =
1√
πn

Γ(n+1
2

)

Γ(n
2
)

1

(1 + t2

n
)
n+1
2

We will see shortly the utility of this distribution when we will study the
estimator of the variance. variance.
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Chapitre 3

The central-limit theorem

Let X1, · · · , Xi, · · ·Xn be n independent random variables having respec-
tively m1, , · · ·mi, ·mn as expectation value, σ12, · · · , σ2

i , · · · , σ2
n as variance

and fi as p.d.f (not necessarily identical ). If Fi is the distribution function
associated to (Xi −mi) and S2

n =
n∑
i=1

σ2
i then :

n∑
i=1

(Xi −mi)

Sn
lim
n→∞

U = N(X; 0, 1)

if the condition of Lindeberg-Cramer is satisfied :

lim
n→∞

[
1

S2
n

n∑
i=1

∫
|x|>ε Sn

x2dFi(x)

]
= 0

This condition is better put under the following form : None of the variables
is dominating the others and the contribution of all variables is uniformly
small. c

Special case demonstration

If the Xi are all identical with a common expectation value m and a common
variance σ2 then :

X = 1√
n

(
X1+X2+···+Xn−nm

σ

)
= 1√

n

∑
i

(Xi−m)
σ

=
n∑
i

Xi−m√
nσ

=
n∑
i
xi

is the sum of n centered variables (expectation 0) and a variance = 1
n
each of

them has for a characteristic function : φxi(t) = E(eitxi) = 1+0− t2

2n
+0

(
1
n2

)
The characteristic function of the sum of those independent variables is
φX(t) =

n∏
1=i

φxi =
(
1− t2

2n

)n
. If n → ∞ then we have : φX(t) → exp

(
− t2

2

)
which is the characteristic function of N(X, 0, 1).
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Chapitre 4

statistics

The goal of statistics is to find the characteristics of a given population
(Ω) using a sample of this population. Many tools are used to attain this
goal. Here we will see how one can evaluate those tools and which to choose
in a given situation

Statistics :
Statistics can be defined mathematically as functions of the observations of
a sample which do not depend upon the unknown characteristics of the po-
pulation.

Statistics tools :

In practice, the results of a statistical study allow to evaluate some cha-
racteristic parameters. This is often cast in the following form : θ = A± B.
We will learn later what this statement means in details. However we can
anticipate by saying that A is a value we think to be as close as possible to
the true one. The interval [A−B,A+B] can be used (following some rules to
be explained later) to quantify our belief/confidene on A. In order to reach
this statement we need to understand the tools we use to obtain it :

2 Estimators

These are statistics which allow to estimate one parameter of the population
θ. the estimate will be noted θ̂.
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Example :

One may ask how we can estimate the mean value µ of the population ?
There are indeed many possibilities :
• 1
n

n∑
i=1

xi

• n

√
n∏
i=1

xi

•max(xi)+min(xi)
2

•” 1
n

n∑
i=1

xi” after eliminating 5% of both extremities.

• The median : the value x0 for which F (x0) = 1/2 (when possible)
The question which follows : Which one to choose ?

Estimator’s proprieties

• The bias criterium :
b(θ̂) = E[θ̂]− θt

θ̂ is a function of random variables so it is a random variable itself ⇒ E[θ̂] is
its expectation value. θt is the true value of the parameter associated to the
population.
The estimator is said to be unbiased if :

b(θ̂) = 0

and asymptotically unbiased if :

lim
n−∞

bn(θ̂) = 0

where n is the number of events used in the estimation.
Example 1 :

The sample mean is an unbiased estimator of the true mean of the popu-
lation :

E

[
µ̂ =

1

n

n∑
i=1

xi

]
=

1

n
E

[∑
i

xi

]
=

1

n

∑
i

E[xi]

=
n

n
E[x] = µ⇒ E[µ̂] = µ
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Example 2 :
We will study two estimators of the variance. The first is used when the true
value of the mean is known while the other is used when the mean value is
only estimated from the same sample :

• variance with known µ :
In this case we propose the following estimator

S2
1 =

1

n

n∑
i=1

(xi − µ)2

Let’s take the expectation value of this estimator :

E[S2
1 ] = 1

n
E
[
n∑
i=1

(xi − µ)2

]
= 1

n
E
[
n∑
i=1

(x2
i − 2xiµ+ µ2)

]

= 1
n
E [
∑
i x

2
i − 2µ

∑
i xi + nµ2]

= 1
n

(nE[x2]− 2µ× nE[x] + nµ2)

= 1
n

(nE[x2]− 2nµ2 + nµ2)

= 1
n

(nE[x2]− nµ2) = n
n
σ2 = σ2

Hence S2
1 is an unbiased estimator of the variance σ2 if µ is known.

• variance with unknown µ :

Since µ is unknown we replace in S2
1 , µ by its estimator :

µ̂ =
1

n

n∑
i=1

xi

We rename the new estimator S2
2 :

S2
2 =

1

n

n∑
i=1

(xi − µ̂)2

E[S2
2 ] =

1

n
E [

∑
i

x2
i ]− E

[(∑
i xi
n

)2
]

Since σ2 = E[x2]− µ2 and V [
∑
xi] = E

[
(
∑
xi)

2
]
−
(
E
[∑
i
xi

])2
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E[S2
2 ] =

1

n
(n(σ2 + µ2)− 1

n

(
V
[∑

xi
]

+ (E[
∑
i

xi])
2

)
but

V [
∑
i
xi] = nV [x] = nσ2

E[
∑
i
xi] = nµ

⇒ E[S2
2 ] = 1

n

{
n(σ2 + µ2)− 1

n
(nσ2 + n2µ2)

}
= 1

n
(n− 1)σ2

This leads to the conclusion that S2
2 is a biased estimator of the variance σ2.

One can however get rid of this bias by defining a new estimator :

S2 =
n

n− 1
S2

2 =
1

n− 1

∑
i

(xi − µ̂)2

•Consistency

An estimator is said to be consistent if ∀ε > 0

lim
n→∞

P (|θ̂ − θi| ≥ ε) = 0

This means that the estimator converges to the true value with increasing n.

Remarks :
1-If the data are distributed according to a a gaussian p.d.f or in more ge-
neral way according to a p.d.f for which the C.L. theorem applies then the
sample mean is a consistent estimator of the true mean since in this case the
estimator p.d.f is N(x̂;µ, σ

2

n
) whose width goes to zero as n increases to ∞

and then x̂ goes to µ.
2- An estimator can be consistent without being unbiased. It should be ho-

wever asymptotically unbiased.

• Efficiency
The efficiency of an estimator is a notion related to its variance. It increases

when the variance decreases. As an example let’s estimate the variance of
the sample mean estimator and the variance estimator :
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V

[
µ̂ =

1

n

n∑
i=1

xi

]
=

1

n2

∑
i

V [xi] =
n

n2
V [x] =

σ2

n

V

[
S2 =

1

n− 1

∑
i

(xi − µ̂)2

]
=

(
σ2

(n− 1

)2

V

[∑
i

(xi − µ̂)2

σ2

]
If xi is distributed according to a gaussian p.d.f or such that the C.L. theorem
applies then :

V [S2] =
(
σ2

n−1

)2
V
[∑
i
z2
i

]
=
(
σ2

n−1

)2
V [χ2(n− 1)]

= 2(σ2)2

n−1

σ2 being unknown we replace it by its unbiased estimator S2.

⇒ V [µ̂] =
S2

n
, V [S2] =

2(S2)2

n− 1

µ̂⇒ µ̂±
√
S2

n
S2 ⇒ S2 ±

√
2

n− 1
S2

3 Information and likelihood

The information concept in statistics was proposed to quantify the know-
ledge/ignorance about the characteristics of a population. Since the variance
is a quantity which expresses also the knowledge/ignorance of the searched
parameters and since the efficiency of an estimator is directly related to its
variance we can use the information concept to evaluate the efficiency of
one estimator. The information concept should satisfy the following require-
ments :

• The information should increase when the number of observations increases.
The precision of the estimator should be consequently improved.
• The observations not related to the studied parameters should not increase
the information.
R.A. Fisher was the first to introduce the information concept. We will use

here his definition :
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Likelihood function

Let’s consider a random variable X with a p.d.f described by f(x, θ)
where θ is the studied parameter. the function of adjoint probability of n
independent observations

n∏
i=1

f(xi, θ) = L (x1, x2 · · ·xn, θ) is called the likeli-

hood function . Fisher definition of the information is based on this function :

Ix(θ) = E
[(

∂`n(L (xiθ))
∂θ

)2
]

= E
[(

∂`
∂θ

)2
]

=
∫

Ωθ
(∂`n(L (x,θ)

∂θ
)2 L(x, θ) dx

where ` = `nL and Ωθ is the random variable domain which may depend on
the parameter θ. The generalization to n variables and k parameters follows :

[
Ix(θ)

]
ij

=
∫ dx

Ωθ

∂`(x; θ)

∂θi

∂`(x, θ)

∂θj
L (x, θ)

The score

We define the score of a sample as follows :

S =
∑
i
S1(xi, θ) =

∑
i

∂
∂θ
`nf(xi, θ)

S = ∂
∂θ

(`(x; θ)) = ∂
∂θ
`

We then link the information to the score :

I = E[S2(x; θ)]

If Ωθ is independent of θ and L(x, θ) is regular we can show easily that :

E[S(x, θ)] = 0

⇒ I = V [S(x; θ)] = −E
[
∂S

∂θ
(x; θ)

]
We can also show that :

I(θ) = E[S2(x, θ)] = E[(
∑
i
Si(xi, θ))

2]

= nV [S1(x; θ)] + n2 {E[S1(xiθ)]}2

This means that when n increases, I(θ) increases as well. We can notice
also that if the observations do not depend on θ, L does not depend neither
⇒ S1 = 0. This leaves I unchanged.
Therefore, I satisfies the two requirements of the information concept.
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The minimal variance of an estimator

If θ̂ is an estimator of θ such that E[θ̂] = θ + bn(θ̂)and if the associated
variance is defined and the random variable domain is independent of θ then
the following theorem applies :
Théorème de Rao-Cramer

σ2(θ̂) = V [θ̂] ≥ 1 + bn(θ̂)

I(θ)

if bn(θ̂) = 0 then σ2(θ̂) ≥ 1
I(θ)

= σ2
min(θ)

This allows us to define the efficiency of an estimator in the following way :

ε(θ̂) =
σ2
min(θ)

σ2(θ̂)
=

1

I(θ)σ2(θ̂)

From the previous theorem we can deduce the following result :

If the p.d.f of the random variable of the considered population is of the
form :

f(x; θ) = exp
(
A(θ)θ̂ (x) +B(θ) +K(x)

)
then θ̂ is an unbiased efficient estimator of the quantity

E[θ̂] = −
∂B(θ)
∂θ

∂A(θ)
∂θ

This can be generalized to the case of more than one parameter :

f(x; θ) = exp
(
A(θ) θ̂(x) +B(θ) +K(x)

)

E[θ̂i] =

−∂B(θ)
∂θi

+
∑
j 6=i

E(θ̂j)
∂Aj
∂θi

(θ)

∂Ai
∂θi

(θ)

Application :
The normal distribution N(x;µ;σ2) = 1√

2πσ2
exp

(
−1

2
(x−µ)2

σ2

)
can be

written as :

N(x;µ, σ2) = exp

(
µ

σ2
x− 1

2σ2
x2 − 1

2

(
µ2

σ2
+ `n(2πσ2)

))
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The adjoint probability of having x1, · · · , xn in n observation is then given
by :

n∏
i=1

N(xi;µ, σ
2) = exp

(
nµ

σ2
x̄− n

2σ2
x2 − n

2

(
µ2

σ2
+ `n(2πσ2)

))

with the expression of f(x, θ) we can deduce :

A1 = nµ
σ2 θ̂1 = x̄ = 1

n

n∑
i=1

xi

A2 = − n
2σ2 θ̂2 = x2 = 1

n

n∑
i=1

x2
i

B = −n
2

(
µ2

σ2 + `n(2πρ2)
)

K = 0

θ̂1 = x̄ is the unbiased efficient estimator of :

−∂B
∂µ

∂A1

∂µ

= µ

and θ̂2 = x2 is the unbiased efficient estimator of :

− ∂B
∂σ2 + E(θ̂1)∂B

∂µ
∂A2

∂σ2

= µ2 + σ2

4 Maximum likelihood method

The liklyhood function defined by :

L(x1, x2, ·, xn, θ) =
n∏
i=1

f(xi, θ)

is the function of the adjoint probability associated to n independent mea-
surements of x1, x2 · · · , xn.
It can be interpreted in two ways :

Probability interpretation : Knowing the parameter θ, L gives the proba-
bility that an experiment equivalent to ours produces the same measurements
x1, x2 · · ·.
Statistical interpretation : Having obtened x1, x2 · · ·xn as measurements
and believing that we know the p.d.f, one can find the parameter θ by maxi-
mizing L.
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In practice we replace L by its logarithm :

` = `nL(x1, · · ·xn, θ) =
∑
i

`n f(xi, θ) =
∑
i

`i

maximizing ` leads to maximizing L

∂

∂θi
` =

1

L
∂L
∂θi

= 0

Remark :

The previous condition leads to an extremum. One should however check
that this is indeed a maximum and the maximum of the maxima.

Example : For measurements of n random variables each normally distri-
buted according to N(xi;µi, sigma

2
i ). The likelihood function built with the

n measurements xi, · · · , xn is :

L =
n∏
i=1

1√
2πσ2

i

e
− (xi−µi)

2

2σ2
i

` =
n∑
i=1
−1

2
`n(2π)− `nσi − (xi−µi)2

2σ2
i

if the µi are all identical µi = µ while the σi are different but known :

∂`

∂µ
= 0⇒

∑
i

xi
σ2
i

−
∑ µ

σ2
i

= 0

⇒ µ̂ =

∑
i xi/σ

2
i∑

i 1/σ
2
i

which is a M.L. estimator of the mean value µ

It is easy to check that this estimator is unbiased : E[µ̂] = µ
In addition :

V [µ̂] =
1∑

i 1/σ
2
i

I = −E
[
∂S
∂µ

]
= −E

[
∂2`
∂µ2

]
=

∑
i

1
σ2
i
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The previous result indicates that V [µ̂] = 1/I which shows that the ML
estimator µ̂ is an efficient one.

The asymptotic proprieties of L

We can show that asymptotically when the number of observations be-
comes large :

S(x, θ) = −I(θ̂)(θ − θ̂) =
∂`n

∂θ

⇒ ` = `n L = −I(θ̂)

2
(θ − θ̂)2 + `n k

k = L(θ̂) = Lmax

⇒ L(θ) = Lmax exp

(
−I(θ̂)

2
(θ − θ̂2

)
≈ N(θ; θ̂; 1/I(θ̂)

Asymptotically L is proportional to a gaussian function of θ centered at
θ̂ and having for width (variance) 1

I(θ̂)

Remark : L is not a p.d.f. of θ so any change of parameter from θ → g(θ)
can be done in replacing in L(x; θ) simply θ by g(θ) :

L′(x, θ) = L(xg(θ))

Variance of the M.L. estimator
If the M.L. estimator is efficient, biased or unbiased, and if the definition
domain of the random variable does not depend on θ then we can estimate
the variance using the relation V −1[θ̂] = I[θ]. Two methods can be used to
obtain I :
• I[θ] = E[s2] = E

[(
∂`
∂θ

)2
]

which can be generalized to E
[
∂`
∂θi

∂`
∂θj

]
= V −1

ij

Using E[S1] = 0 and replacing θ by θ̂

V̂ −1
ij [θ̂] =

n∑
k=1

∂`nf(xk, θ)

∂θi

∣∣∣∣∣
θ̂

∂`nf(xk, θ)

∂θj

∣∣∣∣∣
θ̂
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• I(θ) = −E
[
∂S
∂θ

]
We can show that :

V̂ −1
ij [θ̂] = −

n∑
k=1

∂2`nf(xk, θ)

∂θi∂θj

∣∣∣∣∣
θ̂

Remark The two methods provide the same results in the asymptotic case.

Bayesian inference method for the estimation of the M.L estimator
variance

If the M.L. estimator does not satisfy the previous conditions (domain
independence of theta...) and if L could not be put under a gaussian form
then we may use the bayesian method to estimate the variance :

f(θ/x) propotional to f(x/θ) f(θ)

In this case θ becomes a "random variable" f(x/θ) = L(x; θ) and if we take
f(θ) = cte then :

f(θ/x) =
L(x; θ)∫
L(x; θ) dθ

(normalization)

f(θ/x) being considered as p.d.f of the "variable" θ, we have :

Vij[θ̂] = E(θ̂i.− θi)(θ̂j − θj)]

Vij[θ̂] =
∫

(θ̂i−θi)(θ̂j−θj)L(x,θ)dθ∫
L(x,θ) dθ

Estimation of the M.L estimator variance using a graphic method
There is a graphic method which allows to find the variance when L has a

gaussian shape :
L = Lmax e−

1
2
Q2 with Q2 = (θ̂−θ)2

σ2

⇒

` = `nL = `n Lmax − 1
2
Q2

`(θ) = `n Lmax − 1
2

(θ̂−θ)2
σ2

If θ1 is such that θ̂ − θ1 = σ

then `(θ1) = `nLmax − 1
2

`(θ1) = `max −
1

2
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This means that in order to find the variance (uncertainty of an estimation)
one should find the maximum value of θ0 associated to `max = `nLmax and
then find the value of θ1 for which the value of is reduced by 1/2. The
difference |θ0 − θ1| gives then the variance value.
If L does not have a gaussian shape one could try to perform a "variable
change" θ → g(θ) such that L(x; g(θ)) has a gaussian shape.
We then look for g1,2 such that ; `(g1,2) = `max − 1

2

⇒ θ1 = g−1(g1) θ2 = g−1(g2)

⇒ σ1 = |θ̂ − θ1|, σ2 = |θ̂ − θ2|

σ1, σ2 are not necessarily identical.

Maximum likelihood with constraints

When the parameters we are trying to estimate are linked among each
others or they are constrained into specific domains. We should take these
constraints into consideration because they can contribute to the variance
(uncertainty) reduction. Indeed those constraints add to our knowledge and
hence increase the information which as we already saw is inversely propor-
tional to the variance.

Few tricks to deal with constraints// • If there is a simple relation

between the parameters such that : θ1 + θ2 = 0 one can replace θ2 by −θ1.
• if θ1 < θ < θ2 one can propose a new parameter ψ to replace θ such that :

θ = θ1 +
1

2
(sinψ + 1)(θ2 − θ1)

However a more general solution does exist :

5 Lagrange multipliers

The constraints on the different parameters can be put into relations of
the form :

g(θ) = 0
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We then extend the definition of the likelihood function to include those
relations using the Lagrange multipliers

`nL(x; θ)→ F (x; θ, α) = `nL(x; θ) + αTg(θ)

αTg = α1g1 + α2g2 + · · ·

We then look for the maximum of the extended likelihood function with
respect to θ and α :

∂F

∂θi

∣∣∣∣∣
θ=θ̂,α=α̂

=
∂`

∂θi

∣∣∣∣∣
θ=θ̂

+ α̂T
∂g

∂θi

∣∣∣∣∣
θ=θ̂

= 0

∂F

∂αj

∣∣∣∣∣
θ=θ̂,α=α̂

= g(θ̂) = 0 (contraintes satisfaites)

From what precedes we can construct the information matrix :

I = −E


∂2F
∂θ∂θ

∂2F
∂θ∂α

∂2F
∂α∂θ

∂2F
∂α∂α

 =

 A B

BT 0


V [θ̂] = A−1 − A−1B V [α̂]BT A−1

V [α̂] = (BT A−1B)−1

6 Least squares method

We have seen seen that the likelihood function L corresponding to n
independent measurements distributed according to N(xi;µ;σi) is given by :

L =
n∏
i=1

1√
2πσ2

i

e
− (xi−µ)

2

2σ2
i

and that

` = `n L = −n
2
`n2π +

n∑
i=1

[
−`nσi −

(xi − µ)2

2ρ2
i

]

To maximize L and consequently ` is then equivalent to minimize "
n∑
i=1

(xi−µ)2

σ2
i

".

The latter is clearly distributed as χ2(n) if µ is known and according to
χ2(n− 1) if µ is estimated from data( "1 relation linking xi").
This leads to the least squares method’s estimator by deriving with respect
to µ :
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χ2 =
n∑
i=1

(xi − µ)2

σ2
i

∂χ2

∂µ

∣∣∣∣∣
µ̂

= −2
n∑
i=1

(xi − µ̂)

σ2
i

= 0

⇒ µ̂ =

n∑
i=1

xi
σ2
i

n∑
i=1

1
σ2
i

Remark ; We find here the same estimator that we obtained from the likeli-
hood method. This coincidence is due to the fact that our data are distribu-
ted normally (gaussian). In gnral and for dufferent kinds of distribution the
estimators obtained from the two methods are different.

Remark :

The least squares method is a special case of a category of methods based
on the minimization of different kinds of distances :

d =
∑
i
|xi − µ|α

d =
∑
i

(
|xi−µ|
σi

)α
historically Laplace in 1792 used |xi − µ|α=1 but in 1805 Legendre proposed
(xi−µ)2

σi2
(to determine the comets’ orbits).

Least squares estimator’s variance
the variance of the least square estimator of the mean value is given by
l’estimateur de moindres carrés de la valeur moyenne trouvée dans le cas de
distributions normales est donnée par :

V [µ̂] = V


∑
i

xi
σ2
i∑

i

1
σ2
i

 =

(∑
i

1

σ2
i

)−1

=
1∑
i

1
σ2
i

If we take the successive derivatives of χ2 at µ = µ̂ we have the following
results :
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χ2(µ) =
∑
i

(xi−µ)2

σ2
i

∂χ2

∂µ

∣∣∣∣∣
µ=µ̂

= −2
∑
i

(xi−µ̂)
σ2
i

= 0

∂2χ2

∂µ2

∣∣∣∣∣
µ=µ̂

= 2
∑
i

1
σ2
i

= 2
V [µ̂]

The derivatives of higher order are all null. This allows to rewrite the χ2 for
any value of µ in the vicinity of µ̂ using a Taylor development :

χ2(µ) = χ2(µ̂) +
(µ− µ̂)2

V [µ̂]

Estimation of the least square estimator variance using a graphic
method

The previous formula provides us with a graphic method to find the the
variance of estimator. Indeed, once the the value of µ̂ corresponding to the
minimum χ2 value is found we look for µ1 et µ2 such that :

µ1 − µ̂ = µ̂− µ2 = V [µ̂]⇒ χ2(µ1) = χ2(µ2) = χ2(µ̂) + 1

which provides us with the variance.

7 Least squares linear model :

Let y1, y2 · · · yn be nmeasurements of the y quantity which depends on
another quantity x. For each value of xi (that we consider exactly knwon)
we associate the measurement yi. We would like to predict the y associated
to a given x. For this we propose a relation linking y to x

y = θ1h1(x) + θ2h2(x) + · · ·+ θkhk(x)

where y is linear with respect to the parameters θi. On can then write each
yi asa function of xi :

yi = y(xi) + εi =
K∑
j=1

θjhj(xi) + εi

Let’s suppose that theεi are such that :
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E[εi] = 0 V [εi] = σ2
i with the σi are well known but not necessarily

gaussian.
We try to determine the θi with the n measurements (n ≥ k) using the least
squares method as follows :

Q2 =
n∑
i=1

ε2i
σ2
i

=
n∑
i=1

(yi−y(xi))
2

σ2
i

=
n∑
i=1

1
σ2
i

(
yi −

K∑
j=1

θjhj(xi)

)2

Remark The σi are not necessarily gaussian ⇒ Q2 is not necessarily χ2

distributed.

Let’s know minimize the previous expression of Q2 with respect to θ`. we
obtain :

∂Q2

∂θl
= 2

n∑
i=1

1

σ2
i

gi − k∑
j=1

θjhj(xi)

hl(xi) = 0

Which can be put more in more elegant way :

n∑
i=1

hl(xi)

σ2
i

K∑
j=1

θ̂jhj(xi) =
n∑
i=1

gi
σ2
i

hl(xi)

and by introducing the following matrices :

y =

 y1

yn

 , θ =


θ1
...
θk

 , ε =


ε1
...
εn



H =


h1(xi) · · · hk(x1)

...
h1(xn) hk(xn)


We can rewrite the previous relations as follows :

y = H θ + ε

Q2 = εTV −1ε

with
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V =


σ2

1 0 0 ·
0 σ2

2 0 ·
· · · ·
0 0 · σ2

n


Remark We can include the case when the measurements are not inde-
pendent through correlations in the V matrix.
If we replace now εi by its expression we have :

Q2 =
(
y −H θ

)T
V −1(y −H θ)

∂Q2
∂θ

= −2 HTV −1(y −H θ) = 0

⇒ HTV −1H θ = HTV −1y

⇒ θ̂ =
(
HTV −1H

)−1
HTV −1y

Let’s evaluate now E[θ̂] :

E[θ̂] = (HTV −1H)HTV −1E[y]

E[y] = H θ car E[∈] = 0 ⇒ E[θ̂] = θ

This shows that the least square estimator θ̂ is unbiased.
Let’s evaluate variance also :

∂Q2

∂θ

∣∣∣∣∣
θ=θ̂

= −2 HTV −1(y −H θ) = 0

∂2Q2

∂θ2

∣∣∣∣∣
θ=θ̂

= 2 HTV (y)−1H = 2 V −1(θ̂)

All the following derivatives cancel and then one will write :

Q2(θ) = Q2 θ̂ + 0 + 1
2
(θ − θ̂)T ∂2Q2

∂θ2
(θ − θ̂)

= Q2(θ̂) + (θ − θ̂)TV −1(θ − θ̂)
This result is identical to the one obtained with the xi normally distributed
(gaussian).
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8 Gauss-Markov theorem

If E(εi) = 0 and if V (εi) are well defined and independent of both y and
θ) then the least squares estimator θ̂ is unbiased and has the lowest variance
of any other estimator in the linear case whatever are the p.d.f of the εi.
Consequences :

• The least squares estimator is superior to the likelihood estimator in the
linear case far from the asymptotic behaviour where both are equivalent.
• Concerning samples of limited number, it becomes sometimes necessary to
group data together. In this case the least square method loses its advantages
with respect to the likelihood one.

Including constraints in the least squares method

Consider the existence of m constraints among the k parameters :

K∑
i=1

`ijθj = Ri i = 1, · · ·m

written with matrices this gives :

Lθ = R

We include the constraint in the definition of Q2 using Lagrange multipliers :

Q2 = (y −H θ)T V −1(y −Hθ) + 2λT (Lθ −R)

We minimize Q2 with respect to both θ and λ

∂Q2

∂θ
= 0 ⇒ HT V −1H θ̂ + LT λ̂ = HT V −1y

∂Q2

∂λ
= 0 ⇒ L θ̂ = R

⇒

 c LT

L o


 θ̂

λ̂

 =

 s

R


where

c = HTV −1

s = HTV −1y

The solutions can be given by :
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θ̂ = F S +GT R = F HTV −1 y +GTR

λ̂ = GS + E R = GHT V −1∈
with the associated variances

V [θ̂] = F

V [λ̂] = W

and COV (θ̂, λ̂) = 0 with

W = (LC−1 T ), F = C−1 − C−1 LT WLC−1

G−1 = W LC−1, E = −W

9 Extended linear model

Let’s now consider the case where xi are not known with certainty and let’s
take the case of a straight line fit with two parameters to find a and b. We
can write y as a function of x as :y = ax+ b
The question we may ask ourselves is the following : Which distance we
have to minimize ? Contrary to the case in which the xi are known with
certainty we should here take into account the uncertainty of xi. The distance
to minimize in this case is given by :

d2
i =

(x− xi)2

σ2
xi

+
(y − yi)2

σ2
yi

This can be cast in more compact form :

d2
i =

(yi − y(xi))
2

σ2
i

with σi is the uncertainty of the quantity yi − axi − b, given by :

σ2
i = σ2

yi + a2σ2
xi
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10 Generalization of the linear model

It is useful to gather the previous results in one general frame in which
uncertainties on x and y are treated coherently as well well as constraints
and correlations. This frame is elegantly presented using matrices as follows :

Zi =

(
xi
yi

)
Zc
i =

(
xci
yci

)
Were Zc

i are different from zero only when there are constraints linking
xi to yi.

V i =

 σ2
xi COV (xi, yi)

COV (xi, yi) σ2
yi


yci = HT (xci)θ

Q2 =
n∑
i=1

(Zc
i − Zi)

T Vi(Z
c
i − Zi) + λi(y

c
i −HT (xci)θ)

The parameters θ are then obtained by minimizing Q2 with respect to θ, xc, yc
and the Lagrange multipliersλ.

11 Binned data

To apply the least squares method we have access to xi as well as to
yi. There are some situation where only one coordinate is given. This case
is well treated by the likelihood method. Is it possible to apply the least
squares method in this case also. The answer is yes. For this we have to
collect the events into mutually exclusive and exhaustive classes defined with
respect to the variable x. An example of this is the histogram whose bins
are the mentioned classes. In this case we compare the number of events in
one bin with that expected from a multinomial distribution in which the Pi
is determined by the p.d.f to describe the data and which depends on the
parameter we are looking for.

n =
∑
i

ni
∑
i

Pi = 1

We introduce the expression of Q2
1

Q2
1 = n

∑
i

(ni/n− Pi)2

Pi
= Q2

1 =
∑
i

(ni − nPi)2

nPi
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This expression is an approximation of the least squares formula. Indeed in
the case of the multinomial distribution for each bin we have σ2

i = nPi(1−Pi)
et COV (ni, nj) = −nPiPj which are different from those used in 2

1. However
, if the Pi are all small then we can admit the following approximation :
σ2
i ' nPi and COV (ni, nj) ' 0. In this case 2

1 is a good approximation.

Consequence : to justify the use of Q2
1 we need to have many bins so that

all Pi are small.
Remark : the use of 2

1 is delicate because of the presence of the parameters
in the denominator through 2

1.
this dificulty can be avoided by introducing :

Q2
2 =

∑
i

(ni − nPi)2

ni

In Q2
2we have replaced the expected uncertainty related to the p.d.f from

that estimated from the measurement (σ2
i = ni ) valid for large value of ni.

Consequence : ni should not be too small (σ2
i = ni )and not too large

neither (COV 6= 0).
Remark : Q2

1 et Q2
2 are not distributed according to χ2(n− 1).

Maximum likelihood versus least squares : The maximum likelihood
can also be used in the case of binned data. The proposed p.d.f is :

L = f =
n!

n1!n2!− nk!
P n1

1 P n2
2 P nk

k

` =
∑
i

ni`nPi + cte

where the constant cte does not depend on Pi.
the next step is ti maximize L.
Remark : In the case of the maximum likelihood one can eliminate the nor-
malization coefficients if they don’t include the searched parameters.

We can summerize the previous results by a kind of hierarchy

ML > Q2
1 > Q2

2

However minimization is easier in the case of Q2
1 et Q2

2.
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Chapitre 5

Statistical interpretation

The choice of an estimator is based on its proprieties : Bias, consistency,
efficiency..etc. Once the choice is made we can, using our sample, obtain an
estimate of the searched parameter as well as the estimator variance which
informs on the uncertainty of this estimate . The out put of this work s com-
monly written under the following form : θ = θ̂ ± σθ̂. Let’s try now to give
an interpretation of this formula. To make our work even simpler we suppose
that our estimator is normally distributed (gaussian) .
Two interpretations can be made :
1) The true value of θt has 0, 683 of probability to be in the interval [θ̂ −
σθ̂, θ̂ + σθ̂].
2)Repeating the same measurement many times and estimating each time
the interval [θ̂−σθ̂, θ̂+σθ̂] then, 0, 683 of those intervals will contain the true
value θt

Those two interpretations are the main ones used by physicists when
analyzing the results of one experiment. The first one is called the Bayesian
interpretation while the second one is the frequentist one.
The difference between the two interpretations is not artificial as it may
appear at first look. There is a thorough difference based on different unders-
tanding of the way we should apply statistics in our analyses. Here we will
try to develop each interpretation and where and why it is often used :

12 The frequentist method

Neyman was the first to a give a frequentist interpretation to the result :
θ = θ̂ ± σθ̂ by elaborating the notion of confidence levels. His idea can be
presented as follows :
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f(x, θ) is the p.d.f associated to the random variablex and it depends on the
searched parameter θ. Let’s consider the following probability integral :

β =
∫ b

a
f(x, θ) dx = P (a ≤ X ≤ b)

This integral could not be estimated for any given β since the integrand
contains θ which is unknown. Neyman proposed to perform a variable change
replacing x by y in such a way that the p.d.f g(y)associated to y does not
depend anymore on θ.

β =
∫ B

A
g(y) dy = P (A ≤ Y ≤ B)

The new expression can a priori be estimated. It depends on both A and B.
So for a given β one can hope to fixe A and B. But since A and B depend
themselves on θ this allows to determine two values of θ : θA = θ− and
θB = θ+.
We can then rewrite the previous integral as∫ B

A
g(y) dy = β = P ([θ−, θ+] contains θt)

We should here emphasize the meaning of this relation. It says that the in-
terval [θ−, θ+]has a probability β to contain θt and not there is a probability
β that θt is located in the interval [θ−, θ+]. The parameter θ is not a ran-
dom variable while θ and θ+ are. They inherit their status from the random
variable y. Now what does mean that [θ−, θ+] contains θt ? The meaning is
the following : If we repeat the same experiment 100 times and each time
we estimate [θ−, θ+] then we expect the true value θt to be in β × 100 of the
found intervals. Remark : We use the notion of coverage to interpret the
previous result. We say there is a probability β to cover the true value θt

13 Construction of the confidence

The intervals : [θ−, θ+] we obtain with the frequentist method are called
the confidence level. We will give hereafter the method that allowed us to
construct all the confidence levels associated to a given probability before to
realize the experiment. We will then see how to give the confidence interval
once the experiment is realized.
For this we suppose known the parameter θ and we look for an interval of
the random variable x :

[x−, x+] such that P (x− ≤ x ≤ x+) = β =

x+∫
x−

f(x; θ)dx
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The choice of x−, x+ not being "always" unique we can select the central one
defined by :

x−∫
−∞

f(x; θ); dx =
1− β

2
=

∞∫
x+

f(x; θ) dx

We repeat the same procedure for all values of θ. This leads to two curves.
The first is built from x− . This curve will be called θ+. The second curve is
built from the x+and will be called the θ−.curve.

The experiment output will give us a certain value of x = x̂. From this we
can have an estimate of the true value θt. In order to quantify the uncertainty
on our estimate we use the intersection of the line x = x̂ with the two curves
θ+ and θ+ to determine the interval [θ−, θ+] This interval has a probability
β to contain the true value θt.

14 Confidence bounds

Sometimes we are more interested by non-central confidence level than by
the central ones defined in the previous paragraph. This happens when the
estimated parameters are close or even beyond the physical boundary. In this
case we can establish what we call superior or inferior limit which correspond
to confidence intervals with one of the two boundaries is the largest or the
lowest possible value.

Upper limit
The difference with respect to the confidence intervals we build before is
that here for each value of θt we look for an interval [x−, x+

L ] where x+
L is the

largest possible value. We then fixe the curve θ+ = x−. The output of our
experiment will provide us with x̂ and as before we determine the intersection
of the line x = x̂ with the curve θ+. The found value θsup is called the upper
limit and we have :

β = P (θ ≤ θsup) =
∫ ∞
x̂

f(x; θsup) dx = P (x ≥ x̂)

In the same way we define the lower limit θinf which is the intersection of
the line x = x̂ with with the curve θ− = x+ obtained by the construction of
confidence intervals [x−S , x

+] where x−S is the lowest possible value :

β = P (θ ≤ θinf ) =
∫ x̂

−∞
f(x; θinf ) dx = P (x ≤ x̂)
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Remark : The upper and lower limits are very important in the search of
new phenomena. They allow one to "eliminate" some models which predicts
too much or too few events with respect the observation.

Applications
1- Normal distribution : N(µ, σ)
A) Estimation of the mean value in case of known variance :
The mean sample x̂ = 1

n

∑
i
nxi is the best estimator of the mean value µ . It

is obtained using n measurements distributed normally according to N(µ, σ).
The variance of this estimator can be given by σ/

√
n. We look for xβ/2 such

as :

Pr(x− = µ− (σ/
√
n)xβ/2 < x̂ < µ+ (σ/

√
n)xβ/2 = x+) = β

This leads to :

Pr(µ− = x̂− (σ/
√
n)xβ/2 < µ < x̂+ (σ/

√
n)xβ/2 = µ+) = β

The values of xβ/2 in the case of a gaussian distribution are tabulated. For
instance for β = 0, 95 we have xβ/2 = 1, 96.

B) Estimation of the mean value with unknown variance : In this case we
replace the variance by its unbiased estimator S2

2 = 1
n−1

∑
i

(xi − x̂)2. Now

the variable t = x−µ√
S2
2

is distributed according to the Student distribution. As

before using the tabulated values of tβ/2 and −tβ/2 so that :

Pr(x− = µ− s′tβ/2 ≤ x̂ ≤ µ+ s′tβ/2 = x+) = β

Pr(µ− = x̂− s′tβ/2 ≤ µ ≤ x̄+ s′tβ/2 = µ+) = β

where s′ =
√
S2

2 .
Remark : tβ/2 is determined by the following equation :

tβ/2∫
−∞

t(x;n− 1) dx =
1

2
(1 + β)

Binomial distribution : N !
n!(N−n)!

P n(1− P )N−n

We try to determine P . The best estimator is P̂ = n/N (n number of
success, N number of trials).
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Since N is fixed, for each value of P we determine détermine [n−, n+] such
that :

k=n+∑
k=n−

B(k,N, P ) =
k=n+∑
k=n−

N !

k!(N − k)!
P k(1− P )N−k ≥ β

Remark : The discreet nature of the binomial distribution explains the sign
≥ in the previous sum rather than the equality sign since it is not always
possible for a given real value of β to find two integers n−, n+ such that the
sum is equal to β. This is called un overcoverage.

Poisson sistribution λn

n!
e−λ

The best estimator of λ of the Poisson distribution is the number of
events n. As for the binomial distribution we can build the confidence level
by finding [n−, n+] for each value of λ such that :

k=n+∑
k=n−

P (λ, k) =
k=n+∑
k=n−

λk

k!
e−λ ≥ β

Remark : Both the Poisson and the binomial distribution are not symmetric
and the choice of n−, n+ is not unique.
Remark : In the case of the Poisson distribution which related to rare events
it is usually the upper limit which is looked for :

β = P (λ < λ+) = P (k > n)

=
∞∑

k=n+1

λk

k!
e−λ

+

= 1−
n∑
k=0

λk

k!
e−λ

+

We can show :

1− β =
n∑
k=0

λ+k

k!
e−λ

+
= P (χ2(2n+ 2) > 2λ+)

=
∞∫

2λ+
χ2(2n+ 2) dχ2

For the lower limit we can use the formula :

β =

∞∫
2λ−

χ2(2n) dχ2
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15 Background consideration :

The search of new phenomena is one of the most interesting topics of the
high energy physics . When we search for supersymmetric particles for ins-
tance we select events which respect the characteristics given by the theory of
the supersymmetry. Unfortunately, phenomena of the standard physics can
also show up sometimes when their characteristics are similar to the super-
symmetric related events.We should then take into account this contribution
when we analyze our sample and before to announce a discovery or to set a
limit.
In the case of rare events the distribution of both signal and background is
rather Poissonian. We have then

λ = λs + λbg

Since the estimator of λ is N and since we are looking rather for λs. Then
we can put a limit on lambda and then we deduce the limit on lambda λs

λlims = λlim − λbg

RemarK if N is small ( a negative fluctuation) resulting in λlim ≤ λbg for
certain values of β

alors λlims < 0

This looks absurd but it is not from the statistics point of view. However one
can try to remedy by adopting a more robust method.

16 Unified frequentist method

In order to avoid the problem of finding a negative value of an upper limit
of a positive quantity as mentioned before. There is a method proposed by
Cousins and Field which try to construct the confidence intervals as well as
the upper and lower limits without having those intervals in non physical
zones. The application of this method in the case of Poisson distribution is
the following.

P (n | λs, λbg) =
(λs + λbg)

n

n!
e−(λs+λbg)

To build the intervals we fix λs and then we order the different n according
to the value of the following ratio : R(n, λs, λbg) =

P (n λs,λbg)

P (n λbests ,λbg)
with λbests =

max[0, n− λbg].
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The n are selected with decreasingR and we stop when
∑
n P (n) = β

17 Bayesian method

The Bayesian method is based on the use of Bayes formula :

fpost(θ/x) = f(x/θ) f(θ) = L(x; θ) fprior(θ)

It is interesting to analyze the previous formula in order to understand
the difference between the Bayesian method and the frequentist one. Indeed
in this formula fprior(θ), fpost(θ x) are probability density functions of θ. This
means that θ becomes a variable and no more a parameter. In addition we
need to find f(θ)prior and none could be really justified although the uniform
distribution is often used.

As in the frequentist method we can define intervals we call them credit
intervals which gives the probability of the true θt to belong to :

β = P (a ≤ θ ≤ b) =
∫ b

a
f(θ/x)dθ

By choosing a prior with a uniform distribution we can rewrite the previous
equation in the following way :

β = P (a ≤ θ ≤ b) =

∫ b
a L(x; θ) dθ∫ θsup

θinf
L(x; θ) dθ

Where the denominator represents is the integral of the likelihood func-
tion between the two extreme values of θ and was introduced to ensure pro-
bability normalization. the two values θinf and θsup can be fixed from physics
consideration and introduced as the boundary values of the uniform distri-
bution of the prior.
One can easily see here from what preceds how the Bayesian method can
handle the boundary and the physics constraint. This is an important ad-
vantage of this method.

18 Application

The upper limit on the parameter λs of a Poisson distributed variable can
be obtained with the Bayesian method including the fact that the number of
the observed events could not be less than the background contribution :
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β = 1−

N∑
k=0

(λsups +λbg)k

k!
e−(λsups +λbg)

N∑
k=0

λk
b

k!
e−λb

19 Using the simulation

It happens that the p.d.f of both the signal and the background are of
complicated form and different from those we mentioned in the previous
chapters. In this case ( but also in the case of known p.d.f) we can use the
simulation to build the confidence/credit intervals or to set upper and lower
limits.

For instance, let us take the case of Poisson distribution variables for both
the signal and the background and let’s see how we can proceed to set an
upper limit on λs , we can proceeds as following : We select a range of λs of
interest. For each value of λs we generate signal events according a Poisson
distribution with λs as a parameter. We do the same for the background (fixed
λbg). The output of each trial (we have to make many) is Ntot = Ns + Nbg

then we count the cases for which Ntot ≤ Nobs

1− β =
Cases withNtot ≤ Nobs

all cases

if we consider the upper limit at 95% this means that we have to take β = 95%
then the upper limit will be the λs which gives :

Cases withNtot ≤ Nobs

all cases
= 0.05

Remark : We can also include the constraint that the observed number
of events could not be less than the background contributionNtot easily by
excluding all the cases for which Nbg < Nobs

50



Chapitre 6

Statistical Tests

A statistical test is a test which allows one to choose one of two hypo-
theses :
Examples :
• We are searching for the Higgs boson in the H → γγ. We observed an
excess in this canal with respect to expected background. Is this a Higgs or
a positive fluctuation of the background ?
• We are using two different gas mixtures for our gaseous detector. Which
mixture is the more appropriate ?
• The same kind of crystals is produced by two different companies. How to
be sure that the two productions have the same characteristics ?

There are two kinds of statistical tests :
1- Parametric tests :
Those tests are used when we compare two distributions defined by some
parameters (µ, σ for the normal distributions ).

2- Non parametric tests :
Those tests compare hypotheses without reference to the parameters .

Statistical tests may fail and we can distinguish two kinds of failures :

20 First and second kind of error

In order to explain in practice the two kinds of error that one may make
when dealing with statical tests let’s take the following example :
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Two fertilizers A, B were used by a farmer for his tomatoes. The results
obtained with the fertilizer A in number of kilos of tomatoes can be given by
a normal distribution N(x;µA = 600, σA = 30). The results of the fertilizer
B can be also given by a normal distribution but with different parameters
N(x;µB = 660, σB = 40).

We choose one fertilizer and we take off the mark on its box. We ask the
farmer to use it for his tomatoes production. At the end of the season we ask
him if he can tell us what of the two fertilizers we provided him with ?
The farmer who followed in his youth lectures on statistical treatment of data
will proceed as follows :
1-The farmer will decide to consider the hypothesis with the product A as his
hypothesis of reference and call that H0 and the other one as the hypothesis
H1.
2- The farmer will fix an upper limit beyond based on the normal distribution
associated to the hypothesis H0. The upper limit will be defined at a level of
confidence (1− α) in the following way :

xlim = µA + a(α)σA

a being a function of α. It is defined such that :

α =
∫ ∞
µA+aσA

N(x;µA, σA)dx

For instance if we take α = .05 from the normal distribution A will be equal
to 1,64.
3-The farmer will compare the production result x0with xlim. If x0 ≤ xlim
the farmer will conclude that the product used is the product A. Otherwise
it is the product B associated to the hypothesis H1.

Indeed the quantity of tomatoes produced this year was 630 kg which is
less than xlim = 600 + 1, 64× 30 = 649, 2. So according to the farmer’s rule
the product used was A.
Was the farmer right in choosing the hypothesis H0. There are indeed 4

possible cases : 4 cas de figures sont possibles

x0 ≤ xlim and the used product is A
x0 ≤ xlim and the used product is B
x0 ≥ xlim and the used product is A
x0 ≥ xlim and the used product is B

If H0 is true and we select H1 → error of the first kind .
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if H1 is true and we select H0 → error of the second kind .

Remark : H0 et H1 are not treated on the same footing since it is H0 which
determines xlim. The decision may change if the reference was chosen to the
product B in our previous example with(a lower limit is used in this case)

α being fixed we try to reduce the error of the second kind by.

21 Statistical tests : simples and composites

There are two kinds of tests : simple and composite
A simple test is of the kind : HH is true if θ = θ0) (one value)
A test is said composite if HH is true if : θ ∈ A (set)

22 Tests proprieties

DefinitionsWe call the critical regionW the variable domain which allow to
eliminate the hypothesis H0 and keep H1 P (W/H0) = α, P (W/H1) = 1− β
W̄ is the complementary set P (W̄/H0) = 1− α
α is called the amplitude of the test
1− β is called the power of the test = P (θ).
With those definitions we can introduce the proprieties of the statistical tests
a) The power
Let’s consider two hypotheses :

H0 : θ = θ0 H1 : θ = θ1

A test comparing the two H0 et H1 is the more powerful the bigger 1− β for
θ = θ1 at fixed α .
b) La consistency
A test is said to be consistent if limN→∞ P (θ ∈ W H1) = 1 where N is the
number of trials.
c) Le biais
A test is said to be biased if we can find θ1 6= θ0 (valeur spécifiée par H1 et
H0 respectivement) telle que P (θ1) = 1− β(θ1) < α.
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I Test choice
The choice of the hypothesis based on the previous proprieties should be
made once we optimize both α and β In the case of two simple hypotheses
we can use the method of Neyman and Pearson to determine the critical
region Wα which reduces β.

1 Neyman-Pearson test

Let’s call f(x, θ0) the p.d.f associated to the hypothesis H0 and g(x, θ1)the

p.d.f of the hypothesisH1 then we can write :
P (x ∈ Wα/H0) =

∫
Wα

f(x; θ0) dx = α

P (x ∈ Wα/H1) =
∫
Wα

g(x; θ1) dx = 1− β

Remember that the aim is to find the critical region associated to the valueα
and which maximizes 1− β. The latter can be written as :

1− β =
∫
Wα

g(x;θ1)
f(x;θ0)

f(x; θ0) dx

= EWα

[
g(x;θ1)
f(x;θ0)

H0

]
Neyman and Pearson propose to order the x according to the decreasing
R = g(x;θ1

f(x;θ0)
. We include the values of x associated to the higest values of R

until we have
∫
Wα
, f(x, θ0)dx = α. This determines the Cα = 1/Rlim.

The test of Neyman-Pearson is then based on the inverse ratio of R called λ
estimated for the value x0 of the experiment output.

λ =
f(x0; θ0)

g(x0; θ1)

this can be extended to include other measurements using the likelihood
function. In this case we have :

λ =
L(x, θ0)

L(x; θ1)

We choose H0 if λ > cα
We reject H0 if λ ≤ cα
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Bayesian tests

The Neyman-Pearson method is applied on the p.d.f associated to the
random variables. It inherits the same problem of the frequentist method
when it concerns the boundary conditions. Here again the Bayes formula can
be used in order to incorporate the boundary limits in a coherent manner.
However we know for now the price to pay for...

P (Hi/x) =
P (x/Hi)

P (x/H0) + P (x/H1)
PP (Hi) where i = 0, 1

where H0, H1 are simple hyposises.
If we compare at present P (H0/x et P (H1/x) we have

P (H0/x)

P (H1/x)
=

(Px/H0)

P (x/H1)

P (H0)

P (H1)

we can as for the Neyman-Pearson method define λ :

P (x/H0)

P (x/H1)
=
L(x/H0)

L(x/H1)
= λ

and if we decide to choose arbitrarily a uniform distribution for both H0 and
H1

⇒ P (x/H0)

P (x/H1)
= λ′ = c λ

where c is the ratio :PP (H0)/PP (H1)

Remark : The Neyman-Pearson as well as the Bayesian methods can be
extended (not without a certain amount of complexity) for comparisons with
composite tests.

Adjustment test

When H1 is not specified then the previous tests could not be used. This
is the case when we would like to compare our data to a p.d.f associated to a
given H0. In this case we would like to know if the the proposed H0 is good
and how good it is.
Few adjustment tests exist here are after some of the most used :
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χ2 test

χ2 =
N∑
i=1

(gi − fi)2

σ2
i

fi are given by the p.d.f associated to H0

if the σi are normally distributed then X2 is a χ2(N) distributed.
We can introduce here what we call the confidence level for this test

defined as the probability to have a result of the fit as bad or even worse to
the one we found :

CL =
∫ ∞
x2

χ2(y;N)dy

The meaning of the CL is clear. It measures the deviation of our hypothesis
from the data.
Remark : If one uses the least squares method to determine fi(Q2

min), then
χ2 still follows a χ2 distributed but with a N − K degree where K is the
number of fixed parameters using the least squares method. In addition of
some constraints are used the degree of the χ2 is then N−K+M (M number
of constraints).

Remark :We can use the likelihood method in the same way as for the χ2.
We need however to specify the g(`) associated to the likelihood function. In
this case we define the confidence level as CL=

∫ `max
−∞ g(`)d`.

Run test

The χ2 test could be misleading sometimes. It can be completed by a test
called RUN defined as follows. Let r be the number of de sequences of results
with the same sign with respect to the chi2 fit and :
KA number of data with a positive sign with respect to the fit
KB number of data with a negative sign with respect to the fit
K = KA +KB

we can show that

E[r] = 1 +
2KAKB

4K
,V [r] =

2KAKB(2KAKB −K)

K2(K − 1)

For r > 10 we can use the gaussian approximation in order to deduce the
confidence level and hence we can eliminate H0 even if the output of the χ2

test is ok.
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Kolmogorov test
We use a d.p.f function such F (x) and we compare it to a function Sn(x)

built from the data in the following way :

Sn(x) =



0 x < x(1)

r
n

x(r) ≤ x ≤ x(r + 1)

1 x(n) ≤ x

with x(1) ≤ x(2) ≤ x(r) ≤ x(n)

Sn(x)→ F (x)when n→ if quadH0 is true

We then estimate :

Dn = max{|Sn(x)− F (x)|} for all x

if n ≥ 80

α we reject H0 if
√
nDn >

0, 01 1, 63
0, 05 1, 36
0, 1 1, 22

0, 15 1, 07

Non parametric tests

These are tests where the parameters are not used. We have three kinds
of them. They allow to :

• Verify that 2 variables are independent

• Verify the random nature of one variable
• Verify that 2 samples have the same p.d.f

Tests of variables independence

If we have a smaple of events with the 2 variables x, y distributed according
to f(x, y). We want to check taht :

H0 : f(x, y) = g(x)h(y) g, h are the marginal p.d.f l
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For this we consider the estimated correlation coefficient :

r =

1
n

n∑
i=1

xi + yi − x̄ȳ

Sx Sy
=

xy − xy
Sx Sy

if x, y are independent ⇒ E[r] = 0 and v(r) = 1/(n− 1)

We can show that t = r
√

n−2
1−r2 is distributed according to a student dis-

tribution of the n− 2 order.
This allows to estimate the confidence level (and hence we can reject H0 if
|t| is large).

Test of randomness

If we want to study the distribution of a variable as a function of time or
other quantity we build a sample (xi, yi) where xi is the studied variable and
yi = ti then we try to show that the two variables are independent.

Verification of two samples

• Kolmogorov : We remplace

Dn = sup {|Sn(x)− F (x)|} by
Dn1n2 = sup {|Sn1(x)− Sn2(x)|} ∀x

√
nDn is then replaced by

√
n1n2

n1+n2
Dn1n2 We apply then the same method as

for the Kolmogorov test

• Run : We combine the members of the two samples but we keep track of
their sample origin. The members of the first become the members of A of
the run test and those of the second members of B. We then use the run test
as before.

•χ2 : If we compare 2 histograms with the same binning :

⇒ X2 =
2∑
j=1

k∑
i=1

(nij −NjPi)
2

NjPi

Pi is then replaced by :

P̂i =
n1i + n2i

N1 +N2

The result is distributed as

χ2(k − 1) k number of bins
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