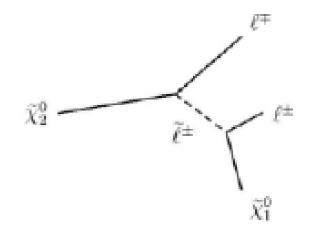


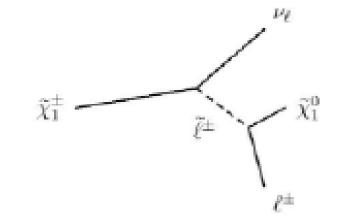
SUSY and UED LS di-muon Status

Pedro Mercadante (UFABC)

LS di-muon team: P.M, Andrey Shchukin, Jason Mansur, Ângelo Santos, Alexey Popov, Leo Bellantoni, Carsten Hensel, Vladimir Goryachev

Summary


- Like Sign Signal
- QCD modelling
- Triggers
- Charge flip
- Cut optimization


Like sign Muon signal at Tevatron

- Trilepton Signal
 - 3 leptons from neutralino/chargino decay
 - Similar for UED. Just change neutralino/chargino to $Z_1 W_1$

• 2 SS lepton

- If mass diference from chargino/neutralino to slepton is very small lepton could be very soft
- Not all leptons are reconstructed
- 2SS leptons might be a good signal

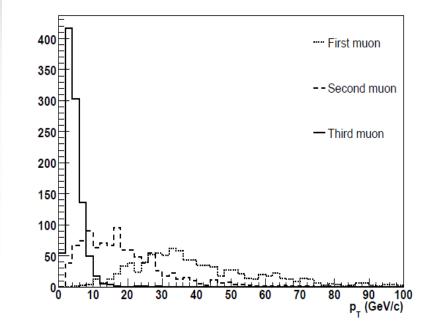


FIG. 4: p_T of the third, second and leading muon for the signal in SUGRA point 1

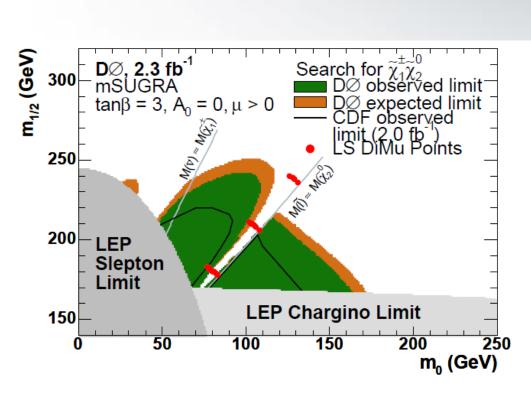



FIG. 3: Simulated signal points in the $m_0 \times m_{1/2}$ plane

Data set and preselection

Data set

- Run IIb 4 fb⁻¹ (Summer 2009 dataset)
- Run IIa CSG_CAF_MUinclusive_PASS3_p18.13.01 data sample

Pre selection

- Events with at least 2 loose SS muons; Track reconstruction χ^2 /ndf < 4, dca < 0.2 or <0.02 (SMT hit), anti-cosmic cut, Δ z muon and primary vertex < 1cm
- Pt > 8 GeV

Isolation

- Tight : Et calo (R=0.4) < 2.5 GeV; Et Track (R=0.5) < 2.5 GeV
- Loose: 2.5 < Et calo < 4.0 GeV; 2.5 < Et Track < 4.0 GeV</p>

Triggers

- Very low rate for single_OR
- Proposal:
 - MuMegaOr trigger list
 - Normalize MC/Data by normalization in the Z-peak region (ex. D0 note 5932)
 - Pt1 > 15 GeV and Pt2 > 10 GeV cut (need to cut the QCD bg)
 - MC normalized using known cross section and data Luminosity
 - Ratio of data and MC Z-peak integrals used as an additional flat scale factor
 - Factor of .835 introduced in the RunIIb plots

QCD background (from data)

- Divide data in two samples:
 - Sample S (signal): 1 tight isolated muon and 1 loose SS isolated muon
 - Sample Q (QCD bg): 1 tight isolated muon and one non loose isolated SS muon.
 - Pre selection criteria but $5 \text{ GeV} < p_T < 8 \text{ GeV}$

Normalization

- Normalize sample Q extrapolating in the high p_T region with weight given by the non isolated muon on sample Q and both muon on sample S:

$$R(p_T) = \frac{N(p_T)^S}{2N(p_T)^Q}$$

Different R for different number of jets: 0,1,2,3 and > 3

Fit

Runllb

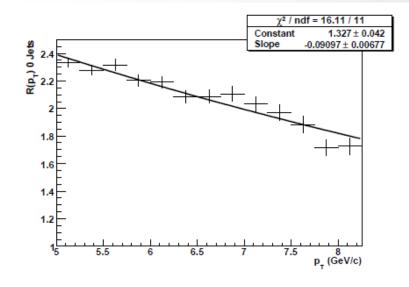


FIG. 10: Normalization function $R(p_T)_{0j}$ for RunIIb data

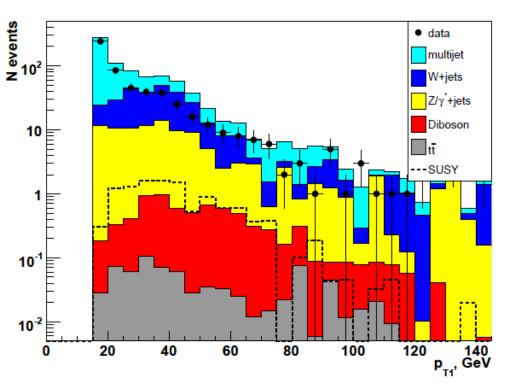
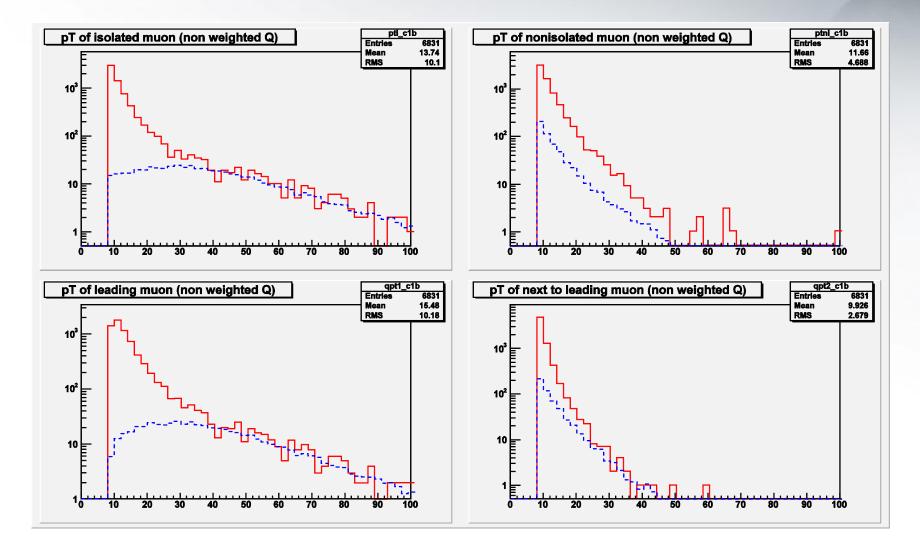
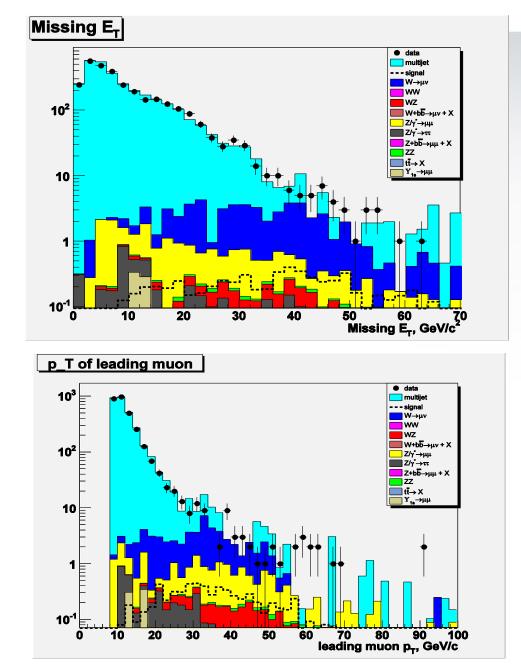



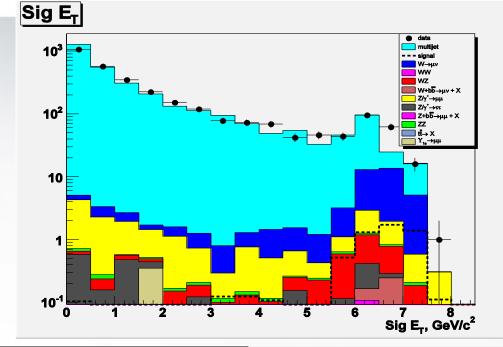
FIG. 18: Leading muon p_T distributions including all EW backgrounds for RunIIb.

EW contamination for sample Q

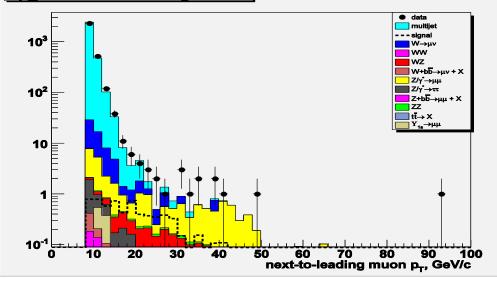
Sample Q from data vs Sample Q from MC

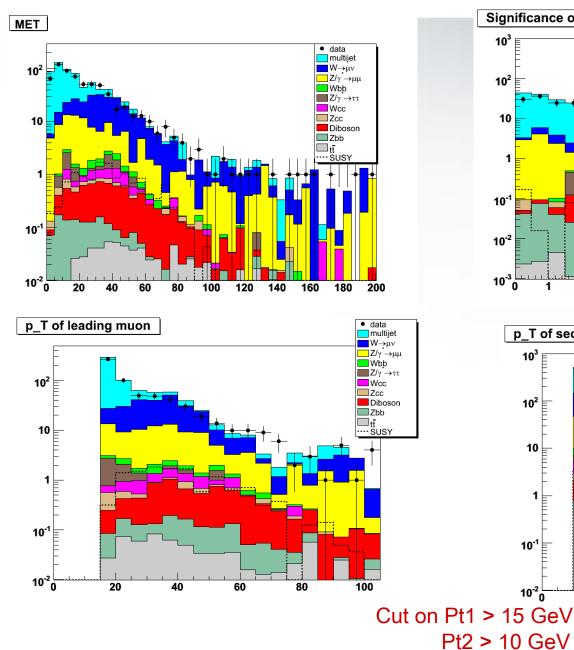
Subtraction of EW contamination

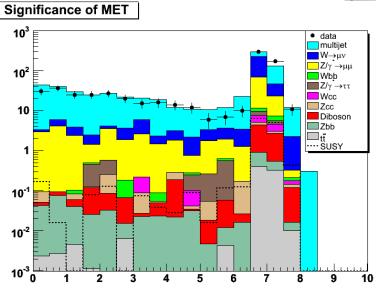


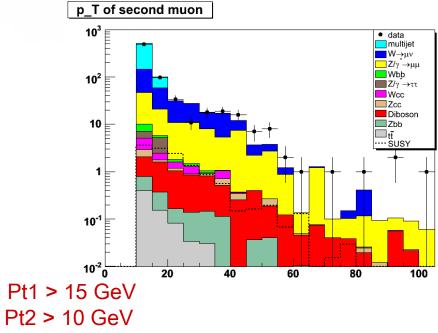

- Idea:
 - Sample Q multi-jet estimation is sample Q_{data} sample Q_{MC}
 - Sample S estimation is Sample Q*R(pt)
 - Introduce a new weigth for each event or subtract bin by bin?
 Second aproach choosed.
 - Subtrate Q_{MC}*R(pt) for each histogram in sample S. In this way we do not introduce bias for fiting in one variable.

Results (Run IIa)


Data 3013 events, QCD 2992.4 events




p_T of next-to-leading muon



Results (Run IIb)

Data 642 events, Total bg 708 events

Results

TABLE IX: RunIIb cutflow

Cut	W	QCD	Z	Diboson	$t\bar{t}$	Total BG	Data	Signal
Pre-selection	$213.7 {\pm} 9.6$	$319.6 {\pm} 19.2$	108.6 ± 7.4	6.7 ± 0.36	0.87 ± 0.10	649.5 ± 22.6	606	11.5 ± 0.83
$p_{T1} > 31$	145.2 ± 8.0	13.1 ± 8.9	75.2 ± 6.1	5.8 ± 0.34	$0.67 {\pm} 0.10$	240.0 ± 13.5	230	8.4 ± 0.72
$p_{T2} > 17$	$73.4 {\pm} 5.7$	0	$46.6 {\pm} 4.7$	4.5 ± 0.29	$0.26 {\pm} 0.08$	124.8 ± 7.4	108	$5.9 {\pm} 0.61$
$E_T > 14$	68.2 ± 5.4	0	40.8 ± 4.4	4.2 ± 0.28	$0.26 {\pm} 0.08$	$113.5 {\pm} 7.0$	96	5.7 ± 0.61
$E_T \times p_{T2} > 500$	$63.0{\pm}5.2$	0	37.1 ± 4.2	$4.0 {\pm} 0.28$	$0.26 {\pm} 0.08$	104.4 ± 6.7	86	5.5 ± 0.59
$Sig(\not\!\!E_T) > 6.8$	27.6 ± 3.2	0	13.3 ± 2.3	3.1 ± 0.24	$0.22{\pm}0.08$	44.1 ± 3.9	52	4.5 ± 0.53
$16 < M_{E/T, PT2} < 80$	14.5 ± 2.2	0	$3.9{\pm}1.1$	$2.2{\pm}0.19$	$0.18{\pm}0.08$	20.7 ± 2.5	27	$3.8 {\pm} 0.49$
$M_{\mu\mu} < 90$	12.2 ± 2.0	0	$2.2{\pm}0.97$	$1.12{\pm}0.14$	$0.10{\pm}0.02$	15.6 ± 2.2	10	$3.4{\pm}0.47$
$\chi_g^2 lob < 10$	$4.1{\pm}1.2$	0	$0.81{\pm}0.52$	$0.93{\pm}0.13$	$0.06{\pm}0.02$	$5.9{\pm}1.3$	3	$3.0{\pm}0.45$

TABLE X: RunIIb cutflow

Cut	1	2	3	4	5	6	7	8	9
Pre-selection	$6.46 {\pm} 0.70$	$9.17 {\pm} 0.80$	$9.95 {\pm} 0.83$	$11.50{\pm}0.83$	$15.42 {\pm} 0.96$	$18.24 {\pm} 0.99$	$16.52 {\pm} 0.87$	$3.93{\pm}0.30$	$4.42{\pm}0.31$
$p_{T1} > 31$	$4.05 {\pm} 0.56$	$5.53 {\pm} 0.604$	$6.44 {\pm} 0.66$	8.42 ± 0.72	$11.30{\pm}0.82$	$12.32{\pm}0.81$	$11.93 {\pm} 0.76$	$3.21 {\pm} 0.28$	$3.42{\pm}0.27$
$p_{T2} > 17$	$2.42{\pm}0.44$	$3.63{\pm}0.49$	$4.78 {\pm} 0.56$	5.87 ± 0.61	$8.56 {\pm} 0.71$	9.02 ± 0.69	$8.18 {\pm} 0.62$	$2.11 {\pm} 0.22$	$2.21 {\pm} 0.22$
$E_T > 14$	$2.29{\pm}0.43$	$3.19{\pm}0.46$	$4.46 {\pm} 0.54$	5.69 ± 0.61	$7.96 {\pm} 0.68$	8.52 ± 0.68	$7.81 {\pm} 0.61$	$1.97{\pm}0.21$	$2.04{\pm}0.21$
$\not\!\!E_T \times p_{T2} > 500$	$2.19{\pm}0.43$	$3.09 {\pm} 0.45$	$4.33 {\pm} 0.53$	$5.45 {\pm} 0.59$	$7.46 {\pm} 0.65$	$8.03 {\pm} 0.65$	$7.26 {\pm} 0.59$	$1.85 {\pm} 0.21$	$2.01 {\pm} 0.21$
$Sig(\not\!\!E_T) > 6.8$	$1.64{\pm}0.36$	$2.33 {\pm} 0.37$	$3.42{\pm}0.47$	$4.47 {\pm} 0.53$	$6.65 {\pm} 0.61$	$6.58 {\pm} 0.59$	$6.28 {\pm} 0.54$	$1.49{\pm}0.18$	$1.61{\pm}0.18$
$16 < M_{E_{T}, p_{T2}} < 80$	$1.47{\pm}0.35$	$1.89 {\pm} 0.33$	$2.78 {\pm} 0.42$	$3.82 {\pm} 0.49$	$5.30 {\pm} 0.55$	5.05 ± 0.51	$4.82 {\pm} 0.47$	$1.01{\pm}0.15$	$1.12{\pm}0.15$
$M_{\mu\mu} < 90$	$1.03{\pm}0.28$	$1.34{\pm}0.28$	$2.10 {\pm} 0.36$	$3.36 {\pm} 0.47$	$3.46 {\pm} 0.42$	$4.16 {\pm} 0.46$	3.82 ± 0.42	$0.86{\pm}0.14$	$0.73 {\pm} 0.12$
$\chi^2_{glob} < 10$	$0.84{\pm}0.26$	$1.23 {\pm} 0.27$	$1.70 {\pm} 0.33$	$2.99 {\pm} 0.45$	$2.99 {\pm} 0.40$	$3.65 {\pm} 0.44$	$3.41 {\pm} 0.40$	$0.77 {\pm} 0.13$	$0.62{\pm}0.11$
Cut	10	11	12	13	14	15	16	17	
Pre-selection	$4.54{\pm}0.30$	$5.93 {\pm} 0.37$	6.71 ± 0.33	1.02 ± 0.06	$1.54{\pm}0.11$	$2.20{\pm}0.14$	2.27 ± 0.13	$1.79{\pm}0.08$	
$p_{T1} > 31$	$3.62 {\pm} 0.27$	$4.90 {\pm} 0.33$	$5.56 {\pm} 0.30$	$0.73 {\pm} 0.05$	$1.31 {\pm} 0.10$	1.87 ± 0.12	$1.95 {\pm} 0.12$	$1.57{\pm}0.08$	
$p_{T2} > 17$	$2.67 {\pm} 0.23$	$3.96 {\pm} 0.30$	$4.24{\pm}0.26$	$0.53 {\pm} 0.04$	$1.01 {\pm} 0.09$	1.52 ± 0.11	1.53 ± 0.10	$1.29{\pm}0.07$	
$E_T > 14$	$2.42{\pm}0.22$	$3.67 {\pm} 0.29$	$4.03 {\pm} 0.25$	$0.51 {\pm} 0.04$	$0.96 {\pm} 0.09$	1.47 ± 0.11	$1.47 {\pm} 0.10$	$1.23{\pm}0.07$	
$\not\!\!E_T \times p_{T2} > 500$	$2.27{\pm}0.21$	$3.45 {\pm} 0.28$	$3.92{\pm}0.25$	$0.47 {\pm} 0.04$	$0.94{\pm}0.08$	1.41 ± 0.11	1.45 ± 0.10	$1.21{\pm}0.07$	
$Sig(\not\!\!E_T) > 6.8$	$1.89{\pm}0.19$	$3.00{\pm}0.26$	$3.37 {\pm} 0.23$	$0.36 {\pm} 0.03$	$0.69 {\pm} 0.07$	$1.14{\pm}0.10$	1.21 ± 0.09	$0.98{\pm}0.06$	
$16 < M_{E_{T}, p_{T2}} < 80$	$1.30{\pm}0.16$	$2.26{\pm}0.22$	$2.25{\pm}0.18$	$0.27 {\pm} 0.03$	$0.37 {\pm} 0.05$	$0.68{\pm}0.07$	$0.82 {\pm} 0.07$	$0.58{\pm}0.05$	
$M_{\mu\mu} < 90$	$0.99 {\pm} 0.14$	$1.37 {\pm} 0.17$	$1.33{\pm}0.14$	$0.18 {\pm} 0.02$	$0.19{\pm}0.04$	$0.36 {\pm} 0.05$	$0.49 {\pm} 0.06$	$0.34{\pm}0.04$	
$\chi^2_{glob} < 10$	$0.84{\pm}0.13$	$1.06{\pm}0.15$	$1.11{\pm}0.13$	$0.16{\pm}0.02$	$0.17{\pm}0.03$	$0.33{\pm}0.05$	$0.45{\pm}0.06$	$0.28{\pm}0.03$	

Results

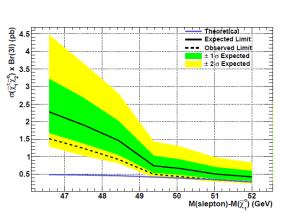


FIG. 33: Observed (dash line) and expected (solid line) limits on $\sigma(p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0) \times BR(3l)$ as a function of the slepton and the lightest neutralino mass difference. Also shown is the expected SUSY cross section.

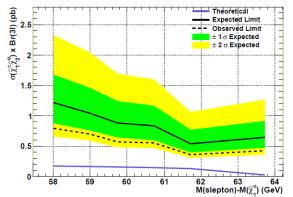
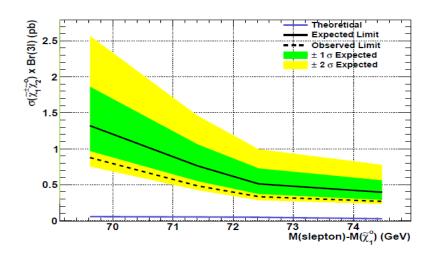



FIG. 34: Observed (dash line) and expected (solid line) limits on $\sigma(p\bar{p} \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_2^0) \times BR(3l)$ as a function of the slepton and the lightest neutralino mass difference. Also shown is the expected SUSY cross section.

25

FIG. 35: Observed (dash line) and expected (solid line) limits on $\sigma(p\bar{p} \rightarrow \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0) \times BR(3l)$ as a function of the slepton and the lightest neutralino mass difference. Also shown is the expected SUSY cross section.

Multi Variate Approach- Work in progress

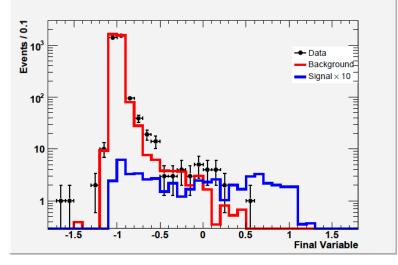


FIG. 31: Output of TMVA classifier for RunIIa.

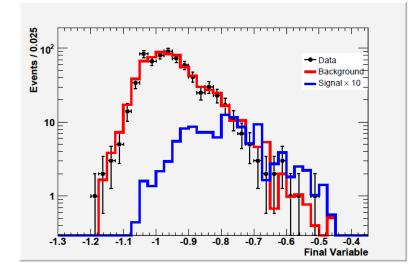


FIG. 32: Output of TMVA classifier for RunIIb.

P. Mercadante