Tags:
, view all tags

Title

Daily Report

-- brenoorzari

Important Files/Folders that I don't remember the date

The important files/folders inside MG are:

  • Background:
    • all the withelecmuon* (25000 events);
  • Signal:
    • truth_studies-master;
    • mass_dark_Higgs:
      • run_01-03 - Default CMS card (10000 events);
      • run_04-06 - CMS card filtered (10000 events);
      • run_07-09 - CMS card filtered with btagging change (10000 events);
    • signal_mass_dark_Higgs_more_events - CMS card filtered with btagging change (25000 events);
    • DM_signal_withelecmuon - CMS card filtered with btagging change (25000 events);
    • DM_signal_withelecmuon_change_recojet - CMS card filtered with btagging and jet reco object change (25000 events);
  • Files:
    • steering.dat;
    • run_card.dat;
    • param_card.dat;
    • ~/Downloads/MG5_aMC_v2_6_4/mass_dark_Higgs/Cards/delphes_card.dat;

The important files inside Delphes are:

  • .pdf:
    • all the fatjet_mass*;
  • Background:
    • all the withelecmuon* (25000 events);
  • Signal:
    • all the mass* (10000 events);
    • all the filtered_mass* (10000 events);
    • all the btag_change_filtered_mass* (10000 events);
    • all the more_events_mass* (25000 events);
    • all the nojet_mass* (25000 events with the normlepeff* card);
  • Macros:
    • plot_varios_fjetmass.C;
    • maisum_dark_Higgs.C;
    • sanity_macro.C;

Important Info

Luminosity for 25000 events (in fb^-1):

  • Backgrounds:
    • Z: 1454,44;
    • W: 439,71;
    • Diboson: 489,06;
    • top: 476,95;

BG Process Events Veto All cuts Lumin. fb^{-1}
Z + bbbar 25000 24989 580 1454,44
W + bbbar 11407 4245 91 439,71
Diboson 25000 4996 50 489,06
ttbar 25000 12587 208 476,95

Result Diboson Z+bb W+bb tt
Paper 0.56+/-0.02 2.42+/-0.07 1.16+/-0.06 2.83+/-0.12
Mine 0.22 1.05 0.48 1.09

Result Diboson Z+bbSorted ascending W+bb tt
BG/Diboson (paper) 1 4.32 2.07 5.05
BG/Diboson (mine) 1 4.77 2.18 4.95

  • Signal:
    • m_{hs} = 50 geV - 34,36;
    • m_{hs} = 70 geV - 42,20;
    • m_{hs} = 90 geV - 51,21;

26/02/2019

Simulated the signal using the CMS card filtered, with the b-tagging eff changed, and with the object to reconstruct the jets also changed. The name of the folder inside the MG folder is DM_signal_withelecmuon_change_recojet. The ROOT files inside the Delphes folder are named DM_signal_withelecmuon_change_recojet50.root, DM_signal_withelecmuon_change_recojet70.root, DM_signal_withelecmuon_change_recojet90.root. The macros plot_varios_fjetmass.C and maisum_dark_Higgs.C were used in those files. The pdf file fatjet_mass_CMSrecojet.pdf was created.

  • The signal was simulated using 25000 events for each mass of the dark Higgs, with the following luminosities (fb^-1):
    • m_{hs} = 50 geV - 34,36;
    • m_{hs} = 70 geV - 42,20;
    • m_{hs} = 90 geV - 51,21.

Changed the delphes_card.dat to produce the gen fat jets. Started simulating the signal with it to see what happens with the b-tagging. The name of the folder inside the MG folder is DM_signal_withelecmuon_genfatjet. The ROOT files inside the Delphes folder are named DM_signal_withelecmuon_genfatjet50, DM_signal_withelecmuon_genfatjet70, DM_signal_withelecmuon_genfatjet90. The macros plot_varios_fjetmass.C and maisum_dark_Higgs.C were used in those files. The pdf file fatjet_mass_CMSgenfatjet.pdf was created. I'll create another macro to analyze the generated fat jets, just like the reconstructed ones to see the differences.

  • The signal was simulated using 25000 events for each mass of the dark Higgs, with the following luminosities (fb^-1):
    • m_{hs} = 50 geV - 34,36;
    • m_{hs} = 70 geV - 42,20;
    • m_{hs} = 90 geV - 51,21.

The next step will be to make the b-tagging by hand, that is, try to match the generated b quarks to the jets (gen and reco), and apply the paper eff to it. Also, the test about the random number could be done with one of the masses to check its role in the fat jet invariant mass histograms. The slides from 25/02/2019 that I showed to Thiago must be changed to be well understood.


08/04/2019

Got a graph exactly like the one in "Hunting the dark Higgs" paper. The name of the file is ALL_backgrounds_mJ.pdf. Also, the macro used to do it is ALL_backgrounds_combined_rightratio.C with the files withelecmuon_ for the backgrounds. I've rescaled the luminosities to 3.2 fb^{-1}, and used a primitive k-factor to do it (choosed 4 because it's the proportion to the ATLAS results). There are some discrepancies between my graph and the paper one that I must talk to Thiago. But it's something.

* bg.png:
bg.png

The figure on the left side is from arXiv:1701.08780 [hep-ph].

I've got the right lepton veto using the reconstructed leptons instead of the generated leptons (I guess I was getting ALL of the generated leptons, instead of only the isolated ones). Less then 1% of the signal events were cut using this veto. My problem is still in the b-tagging and the MET cut. The number of events reduced by the MET cut is expected since I'm getting only the end of the tail events (I'll understand this sentence every time). The b-tagging is excluding almost 100% of the signal events, and that is disturbing.

To solve it, I've generated some new signal events TREES from Delphes for the 3 dark Higgs masses (10000 events each), which contain the gen particle, the MET, the jet, gen jet, fat jet, gen fat jet, reco electrons and muons branches to do the b-tagging by hand and check what is happening. The folder is named DM_signal_withelecmuon_btagging_test, and the files are DM_signal_withelecmuon_btagging_test50, DM_signal_withelecmuon_btagging_test70, DM_signal_withelecmuon_btagging_test90. The macro genfatjet_macro.C was used in those files.

Also, I've build a macro (btagging_namao.C) to check Delphes b-tagging and it's WRONG! In the .root files, there is no b-tagging in the jets, but when I do it by hand, I find a lot (more than zero in this case) of b-tagged jets. I'm testing the jet->Flavor object also, and it seems to be working fine. Don't know what is the problem with Delphes. The next step is to implement my b-tagging in the real files and get the number of events that pass all of the requirements.

There is another new folder, the more_events_DM_signal_withelecmuon_btagging_test since 10000 events aren't enough for what I need. Then I'll test the b-tagging again with the gen particles and the jet->Flavor option. The files inside the folder (and in the Delphes folder) are more_events_DM_signal_withelecmuon_btagging_test50, more_events_DM_signal_withelecmuon_btagging_test70, more_events_DM_signal_withelecmuon_btagging_test90 and I've used the macro btagging_namao.C to check the b-tagging. These files will be used for the signal number of events prediction.

  • The signal was simulated using 30000 events for each mass of the dark Higgs, with the following luminosities (fb^-1):
    • m_{hs} = 50 geV - 41,24;
    • m_{hs} = 70 geV - 50,64;
    • m_{hs} = 90 geV - 61,71.

Tried to solve the NLO problem on MadGraph, but my knowledge doesn't allow me to do it. Must also talk to Thiago about it. I've even tried to use what CLASHEP taught me, but it didn't worked because there is something else missing.


06/06/2019

I've had some problems generating processes at NLO or using access2, but everything seems to be solved. Apparently the macro for analyzing the events is finished (I HOPE SO), and the results i've already got concerning the dark Higgs events are different from the paper results. I need to show everyone this results at the weekly meeting. 300k events of dark Higgs for each of the masses 50 GeV, 70 GeV and 90 GeV were generated using access2, and the ROOT files are there, and also at my folder /Delphes-3.1.4 and are called 300k_*gev.root.

The NLO processes are difficult to generate, and I'm trying to not follow the paper on this, but it seems very hard. The processes at NLO are p p > b b~ vl vl~ [QCD] and p p > b b~ vl l [QCD]. I think that the processes p p > z z [QCD] and p p > z w [QCD] with their decays specified in the madspin card, need to be added by hand, since madgraph at NLO is not giving them in the feynman diagrams. The process p p > b b~ vl vl~ QED<=4 [QCD] gave ALL the Feynman diagrams, but the software couldn't run (apparently there was some problem in the param_card.dat).

At the meeting (06/06/2019)

I've generated the processes p p > b b~ vl vl~ and p p > b b~ vl vl~ QED<=4 at LO, and the diagrams were the same as in the NLO ("the same" reads as their compatible orders). I really need the QED<=4 part of the syntax, otherwise, diagrams with photons/Higgs will not be accounted for.
I must talk to Thiago about all the problems with the BG at NLO and the signal.

I'm also checking the macro, and there must be a double counting in the b-tagging part. No idea how to solve it. The efficiency of the b-tagging must be inserted in the code, but Thiago will answer this. The graphs for the dark Higgs masses of 50, 70 and 90 GeV are (with a landau fit to get the most probable value of the invariant mass of the fat jets, since it worked better than the other ones (I forgot to put the dark Higgs masses in each of them))

  • dh_results.png:
    dh_results.png

The problem at NLO was solved using the newest version of MadGraph (2.6.5), with some changes in the files CT_interface.f. When an process is generated, at the output folder there is the following path /MG5_aMC_v2_6_5/output_folder/SubProcesses/P0_something_something/V0_something_something/CT_interface.f. Inside those files, approximately at the line 650 (can be higher or lower), two quantities that must be changed are (it's just an extra zero that must be erased) ABSP_TMP(I)=0.E0+0_16 and P_TMP(I,J)=0.E0+0_16. The zero after the letter E must be erased!! Otherwise, the check_poles test will fail.

19/06/2019

I've been talking to Thiago to rewrite the macro, and apparently it's good now, but I'm having problems when applying it to the signal (lots of fat jets have only one jet inside it). The problem seems to be that I forgot to change the ParameterR variable inside the Delphes card when generating the 300000 events for each mass of the dark Higgs. I've simulated 30000 events of the dark Higgs signal processes for m_{d_{H}} = 50 GeV to check it. EVERY IMAGE ABOUT THE DARK HIGGS IN THIS TWIKI IS WRONG!!!

The name of the folder is dh_50gev_30000_paperjetreco, and I'm using the macro (inside Delphes folder) V3_terceiromais_dark_Higgs.C. I'll also change the way the jets are generated: for now, the jets are reconstructed only using the charged particles (tracks); I'll use the particle flow that includes everything (in Delphes it's the EFlow array).

In the mean time, Thiago taught me how to write a .root file that contains all the canvases I need, instead of running the macro over and over again (extremely helpful). I also learned how to properly handle data structures in C++, and that save so much time and effort. It makes everything more clear.

Apparently the change in ParameterR solved the problem. I'll generate 300k events for the 50 GeV dh to check it again. The files will be named certo_300k_50gev.root and results_certo_300k_50gev_prunedmass.root (I'll also use the trimmed and the "normal" fat jet masses). If this work, the masses of 70 GeV and 90 GeV will be tested!

01/07/2019

It seems that everything is working out. My b-tagging is almost exactly like Delphes' one (I only need to include the counting of light quarks, gluons and c jets). I'm getting pretty awesome results that match the paper. Every macro that has the name V.C* was used to build and test the b-tagging. V1* and V2* failed in every aspect. V3* started to work, but it was a very crude b-tagging, counting some events (read fat jets) that didn't needed to be there. V4* removed those events, but it was still very crude. V5* was used to test the cut in DeltaR(b,j) and worked perfectly. V6* was already comparing my b-tagging with (spoiler alert!) Delphes B-Tag variable that is working. V7* is applying the right b-tag efficiency, using a random number to set it (just like the delphes does). V8* is doing the b-tagging for every jet in the events (light quark and c) with a misidentification efficiency, but it isn't working properly, since the results are very different than those with Delphes b-tag variable.

The signal events are the files with certo_* .root that were generated following these parameters:

  • All of them had m_{\chi} = 100 GeV;
  • 300000 events on madgraph run for each;
  • All of them were rescaled to L_{r} = 40 fb^-1;

Mass of the particles Luminosity Scale factor
m_{d_{H}} = 50 GeV, m_{Z'} = 1100 GeV L = 411,6244 fb^-1 0.0972
m_{d_{H}} = 70 GeV, m_{Z'} = 1100 GeV L = 506,0932 fb^-1 0.079
m_{d_{H}} = 90 GeV, m_{Z'} = 1100 GeV L = 616,9749 fb^-1 0.0648
m_{d_{H}} = 70 GeV, m_{Z'} = 625 GeV L = 115,4434 fb^-1 0.3465
m_{d_{H}} = 70 GeV, m_{Z'} = 1700 GeV L = 2633,9161 fb^-1 0.0152

Besides that, I've figured out why Delphes b-tagging wasn't working, and that is because I don't pay atention to anything. I was overwriting the Reco Jet information with the Gen Jet information, and the Reco Jet weren't being b-tagged, only the Gen Jets. Now I'm generating again the files mais_certo_* .root with the same prescription as before, and for the m_{d_{H}} = 50 GeV I've already got very nice results. I've also compared my b-tagging with these results, and they are very similar (as they should!). Don't forget some nice pictures! The next step is to talk to Thiago and check what I'm going to vary to get some efficiencies. Also, I must generate again some backgrounds in NLO to compare with the paper.

Now that all my courses are finished (I hope so) I'll have more time to study C++, python, QFT and HEP.

Below are the images comparing my signal (left images) with the paper signals (right images took from arXiv:1701.08780 [hep-ph]):

  • comp_dh.png:
    comp_dh.png

  • comp_Z.png:
    comp_Z.png

02/07/2019

I'm doing all the backgrounds again, and setting up a macro to analyze them, and a signal file just for fun. Apparentely, my old BG results were wrong, since some cuts were missing (lepton isolation variable) or were wrong (I was not getting the fatjet pt or eta after trimming), and I was using the wrong fatjet mass (Delphes default mass before trimming or pruning). The updated/corrected macro for the backgrounds is mais_certo_ALL_backgrounds_combined_rightratio.C, and a test file was already generated with the name bgchange_mais_certo_ALL_bg_sig_90gev_withiso.root where I tested the signal with m_{d_{H}} = 90 GeV and some old background process done at LO with the names withelecmuon_*. The new result is in the image below:

  • BG_certo.png:
    BG_certo.png

The new BG files will be named pp2tt_50000_1x.root, pp2wbb_w2lv_50000_1x.root, pp2wwbb_50000_1x.root, NLO_pp2zbb_z2vv_50000_1x.root, NLO_pp2zz_50000_1x.root and NLO_pp2wz_50000_1x.root. I've to remember that there are copies of these files in access 2, including the signal ones that I've talked about on 01/07/2019.

Comments

Topic attachments
I Attachment History Action Size Date Who Comment
PNGpng ALL_backgrounds_mJ-1.png r1 manage 67.7 K 2019-04-08 - 17:49 UnknownUser  
PNGpng BG_certo.png r1 manage 34.0 K 2019-07-02 - 19:27 UnknownUser  
PNGpng bg.png r1 manage 53.3 K 2019-05-08 - 12:37 UnknownUser  
PNGpng comp_Z.png r1 manage 82.4 K 2019-07-01 - 21:42 UnknownUser  
PNGpng comp_dh.png r1 manage 89.3 K 2019-07-01 - 21:42 UnknownUser  
PNGpng dh_results.png r1 manage 44.8 K 2019-06-06 - 18:55 UnknownUser  
Edit | Attach | Print version | History: r53 | r18 < r17 < r16 < r15 | Backlinks | Raw View | Raw edit | More topic actions...
Topic revision: r16 - 2019-07-02 - brenoorzari
 

This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

antalya escort bursa escort eskisehir escort istanbul escort izmir escort