Difference: Brenoorzari (27 vs. 28)

Revision 282019-09-10 - brenoorzari

Line: 1 to 1


Line: 502 to 502
  • Get the number of events of signal and BG in that region, and the efficiency using the macro punzi_eff_table_cutflow.C;
  • Use the macro tlimit_mdh_mzp.C with those number of events to find 1-;
  • Find the 95% number of events for that given N_{BG};
  • Convert everything to xsec using the expression \sigma = N/(lumin x eff).
  • Convert everything to xsec using the expression \sigma = N/(lumin x eff), and multiplying the efficiency by 1.2 * xsec (with MET cut)/xsec (without MET cut).

The informations for the mass point 155 GeV are:

m_{Z'} [GeV] N_{S} N_{B} m_{J}^{center} [GeV] m_{J}^{window} [GeV] Efficiency
155 37.507 271.383 150 72 0.0873921

An important point, is the 1.2 factor from madgraph in the final result. To find it consistently with the other points, this factor needed to be taken into account.

The 155 GeV mass point didn't touch the 95% exclusion limit, and I'll try to simulate the 156 GeV one (it was already very close).

I've found the 1.2 factor inside the MadGraph folder, and it's just a grep "1.2" *.f inside Template/LO/Source to see it. This factor doesn't happen in the NLO processes.



This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

antalya escort bursa escort eskisehir escort istanbul escort izmir escort