Difference: Brenoorzari (26 vs. 27)

Revision 272019-09-10 - brenoorzari

Line: 1 to 1
 
META TOPICPARENT name="WebHome"

Title

Line: 477 to 477
  This was ENFPC 2019 week. While there, I learned how to make my DM particle look like a neutrino for the MadGraph misset generation cut. Now I can run only 5k events with a MET restriction, instead of 300k events without MET restriction, and obtain the same result. The change was in the SubProcess/setcuts.f file, where the line if (abs(idup(i,1,iproc)).eq.1000022) is_a_nu(i)=.true. needs to be added after the same lines but with the neutrinos PDG codes. This will improve my results a lot.
Changed:
<
<
Today I did what Thiago told me to a couple of weeks ago. For each value of m_{d_{H}} and m_{Z'}, I needed to find the number of events N that gave me almost 95% CLs (actually 1-\<CLs\>) using the TLimit ROOT class, and calculate the cross section for that value using the formula \sigma = N/(lumin \ eff)*. Then I would calculate the cross section using the number of events that I've found for each m_{d_{H}} or m_{Z'} concerning each BG, and compare both. The graphs are below. Everything that is above the blue line, is excluded with 95% certainty.
>
>
Today I did what Thiago told me to a couple of weeks ago. For each value of m_{d_{H}} and m_{Z'}, I needed to find the number of events N that gave me almost 95% CLs (actually 1-\<CLs\>) using the TLimit ROOT class, and calculate the cross section for that value using the formula \sigma = N/(lumin x eff). Then I would calculate the cross section using the number of events that I've found for each m_{d_{H}} or m_{Z'} concerning each BG, and compare both. The graphs are below. Everything that is above the blue line, is excluded with 95% certainty.
 
  • mdh_xsec_cl.png:
    mdh_xsec_cl.png
Line: 491 to 491
  I'll run the events locally, since they can be running while I do other stuff. Only a couple of thousands of events (10k is enough I guess) will be generated for each point, since I've learned how to make the misset cut in the generation of the signal processes.
Added:
>
>
In the folder Template/LO/SubProcesses/ inside the MG5 folder, I've found the file setcuts.f. Maybe, changing that file will change all the other ones that will be newly created. I've tested it, and it actually works! This will make everything easier, even when running thing in access2, since ther I can't change anything inside a folder before running a given process.

I've generated the mass point m_{d_{H}} = 155 GeV, and, since all d_{H} files in the Delphes folder are named as mais_certo_300k_-gev.root, I'll name the root file as mais_certo_300k_155gev.root (even though it has only 10k events). The cross section of this process was 0.00567 pb (because of the MET cut).

The step-by-step from going to the root file, to a point in the CLs graph is as follows:

  • Use the macro V10_terceiromais_dark_Higgs.C to check the m_{J} variable;
  • Find the best value of the Punzi significance for the m_{J}^{C} and m_{J}^{W} using the macro punzi_eff_bg_separated.C;
  • Get the number of events of signal and BG in that region, and the efficiency using the macro punzi_eff_table_cutflow.C;
  • Use the macro tlimit_mdh_mzp.C with those number of events to find 1-;
  • Find the 95% number of events for that given N_{BG};
  • Convert everything to xsec using the expression \sigma = N/(lumin x eff).
 

Comments

<--/commentPlugin-->
 
This site is powered by the TWiki collaboration platform Powered by PerlCopyright © 2008-2021 by the contributing authors. All material on this collaboration platform is the property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

antalya escort bursa escort eskisehir escort istanbul escort izmir escort